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CHAPTER l 

INTRODUCTION 

1.1. Introduction 

Continuous fiber reinforced composite laminates offer several superior 

attributes when compared to metals on a pound for pound basis. Because of this, 

these laminates are increasingly utilized in weight critical aerospace applications. 

There are numerous textbooks that have been published recently. These provide 

a broad coverage of the material science aspects and mechanics aspects of 

composite materials in general and composite laminates in particular. 

Although the utilization of composite laminates in structural application is 

relatively recent, the concepts and basic ideas that are central to the notion that a 

composite material exhibits superior properties than the constituents by 

themselves is as old as the straw-reinforced clay bricks in ancient Egypt. In more 

recent times, iron rods were used to reinforce masonry in the nineteenth century, 

leading to steel-reinforced concrete. Phenolic resin reinforced with asbestos 

fibers was introduced in the beginning of the twentieth century. The first 

fiberglass application was made in 1942, reinforced plastics were also used in 

aircraft and electrical components. Filament winding was invented in 1946 and 

incorporated into the manufacturing of missiles applications in the 1950s. The 

first boron and high strength carbon fibers were introduced in the early 1960s, 



with applications of advanced composites to aircraft components by 1968. Metal 

matrix composites such as boron/aluminum were introduced in 1970. Dupont 

developed Kevlar (aramid) fibers in 1973. Starting in the late 1970s applications 

of composites expanded widely to the aircraft, automotive, sporting goods, and 

biomedical industries. Currently, emphasis is being placed on development of 

newer metal/matrix and ceramic/matrix composites, as well as carbon/carbon 

composites, for applications in harsh environments, particularly elevated 

temperature. 

Continuous fiber composites (CFCs) are one of the most important materials 

to be introduced into aircraft structures in the last 20 years (Figure 1.1). CFCs 

consist of strong fibers set in a matrix of epoxy resin that is mechanically and 

chemically protective. They were developed at the RAE Farnborough and 

announced in 1966. Not only do CFCs possess excellent strength/weight and 

stiffness but also they offer the unusual opportunity to design the structure and 

the material simultaneously. The directional properties of composite materials 

can be used to aeroelastically tailored wing structures in order to obtain, under 

load, specified twist and camber. This has beneficial effects on aerodynamic drag, 

control effectiveness and air load distribution, leading to increases in range 

capability and load carrying capacity. Such tailoring can be used to obtain a lower 

weight design that satisfies all of the applicable design constrains such as 

strength, flutter and divergence. Compared to 2000 and 7000 series aluminum 

alloys, CFCs offer weight savings of 20%. A further advantage is the ability to 

mould complex shapes. 



Still, CFC material remains expensive and labor intensive in fabricating 

structures. Further drawbacks include significantly reduced strength due to 

undetected damage, reparability problems, and environmental difficulties. The 

first major application of CFC was demonstrated in the design of AV-8B Harrier 

II by the then McDonnell Douglas (Boeing) and British Aerospace. It took about 

10 years to get CFC's into the production cycle. 

Carbon fiber based CFC's are used extensively in recent aerospace 

applications (Figure 1.2). Majorities of airplane surface components are being 

replaced by CFC material except in primary load bearing members (landing gear, 

main spar), or thermal resistance member (engine mount, nozzle, firewall, etc). 

The most aggressive application of composite structure in an aerospace vehicle 

can be seen at scaled composite corporation [Ref. 1.7], where all composite 

vehicles are being developed and tested. Typical CFC-metal main wing structure 

along with conventional types is shown in Figure 1.3. Shown is the main wing of 

the British Aerospace Experimental Aircraft Prototype. Dark areas illustrate the 

use of CFC and light areas show metal usage, including three titanium-made wing 

attachment joints. 

One particular accomplishment in how the CFC application to structures can 

be stretched in aero-vehicle design is the Boeing-Sikorski RAH-66 Comanche 

helicopter (Figure 1.4), currently in the flight testing stage. In addition to 

conventional composite application to save weight, the Comanche airframe has 

load-bearing members made of Hercules IM7 graphite in thermosetting epoxy 

resin. The RAH-66 is built around a composite box (Figure 1.5) beam running the 

length of the forward fuselage. The beam also provides space for the fuel. 



Composites also have opened new opportunities for crashworthy design. Cockpit 

floors have frangible panels to let the crew seats stroke down in a crash, and the 

entire tailboom is designed to break away when impacts greater than 20 ft per 

second occur, to relieve crash loads on the retractable landing gear. The main 

rotor is an all-composite bearingless design. 

Comparably simple to manufacture and cheaper than other exotic composites 

(carbon-carbon, metallic hybrid, etc), CFC still have many attractive aspects in 

many applications. An inherent stealthy characteristic (carbon absorbs 

electromagnetic energy) is another blessing of CFC in recent years. It is 

noteworthy that apart from one or two exceptions, the top speed of airplanes 

(military fighter especially) has been limited by neither aerodynamics nor 

propulsions but by the material/structural efficiency. 

One problem that is of significant interest to the US Air Force is the utilization 

of carbon fiber based polymeric laminates for aircraft application in the presence 

of moderate to high temperature (room to 500°F). In such applications, the 

ability of the structure to withstand repeated mechanical loading cycles can be 

significantly weakened by the presence of elevated temperature. Since polymer 

matrix composites offer significant advantages in manufacturing, they have been 

the materials of choice for a number of Department of Defense programs 

earmarked at reducing weight and thereby cutting operational cost. The notched 

strength of a composite structure subjected to uniaxial loading at room 

temperature has been investigated before (see for example, Waas et al. [Ref. 2.5], 

Soutis [Ref. 4.10], Soutis & Fleck [Ref. 4.5]. The effect of remote biaxial loads, on 

the other hand, has been less well studied (see, Khamseh & Waas [Ref. 2.11]). In 



all of these investigations, the focus has been on identifying the dominant failure 

mechanisms at room temperature. The understanding of failure mechanisms 

under various loading conditions (uniaxial and biaxial loading, room and 

elevated temperature) is the subject of the present thesis. 

Such an investigation, in some sense, adds closure and completeness to the 

previous investigations cited above. An additional motivational factor for the 

present study stemmed from the need to introduce a micromechanics based 

prediction capability to understand the origins of failure and how the failure 

mechanism is influenced by factors such as ply angle and stacking sequence. 

With a view to attaining these goals, a systematic experimental program was 

designed and the results used to drive the modeling features that are introduced 

in this thesis. 

The organization of this thesis is as follows: Chapter 2 describes the 

experimental study and results obtained. Chapter 3 describes the procedure used 

to obtain the stress and strain fields that are subsequently used in chapter 4 and 7 

for the micromechanics based finite element investigation. Chapter 5 examines 

the effect of ply angle and its influence on the in plane failure mode. Chapter 6 

describes the procedure used to obtain the in-situ shear response of the polymer 

matrix used in the composites. Chapter 8 includes a summary of the contribution 

from this thesis, with recommendation for future investigations. 



1.2. Figures 
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Figure l.i CFC Application trend (Ref. 1.2) 

Figure 1.2 CFC Application in EuroFighterAircraft (White area, EFA Web Site) 
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Figure 1.3 Evolution of wing structure in chronological order (a)-(e) (Ref. 1.2) 
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Figure 1.4 RAH66 Comanche (Ref. 1.5) 
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Figure 1.5 CFC Fuselage member of RAH66 (Ref. 1.2) 



1.3. References 

1. Issac M. Daniel and Ori Ishai, 1994, "Engineering Mechanics of Composite 
materials", Oxford University Press. 

2. Ray Whitford, Fundamentals of Fighter Design, i999,"Air International", Key 
Publishing 

3. NASA Langley Research Center, 1984, "Tough Composite Materials: Recent 
Developments", Noyes Publication. 

4. Lawrence   H.   Van  Vlack,   1985,   "Elements   of  Material   Science   and 
Engineering", Addison-Wesley Publishing Company 

5. http://www.boeing.com 

6. http://eurofighter-typhoon.com/index2/index2.htm 

7. http ://www. scaled.com 



CHAPTER 2 

FAILURE MECHANISMS OF MULTIDIRECTIONAL LAMINATES 

UNDER ROOM & ELEVATED TEMPERATURE 

2.1. Introduction 

For structural applications, polymer based fibrous composite materials 

possess several favorable attributes when compared to other traditional materials 

such as metals. A high specific stiffness is one attribute that favors applications in 

the aerospace industry. Because of their complex microstructure, these materials 

exhibit a variety of failure mechanisms when subjected to mechanical and 

thermal loads. Understanding these mechanisms and developing 

micromechanics based modeling capability have been subject areas that have 

received a considerable amount of attention in the recent past. In the present 

chapter, the results of an experimental investigation into the failure mechanisms 

of notched fibrous composite laminated plates will be presented. Plates 

containing a centrally located circular hole were subjected to planar compressive 

loads, both biaxial and uniaxial, under room (250 C) and elevated temperature 

(2000 C). 

The motivation for this study stemmed from a problem commonly occurring 

in aerospace applications where flat plates and panels containing cutouts have to 

be designed to carry a certain amount of mechanical load under various 

10 



operational temperatures. An important question that arises in this process is the 

identification of the dominant failure mechanism at a given temperature and 

loading conditions, which is activated during service conditions. A secondary, but 

equally important question is the amount of stiffness and strength degradation in 

terms of the failure initiation in the presence of an elevated temperature 

environment. 

In this chapter, details of the experiments and the test procedure will be 

presented. Next, the results obtained from the different types of laminates will be 

described, with important observations deduced from the tests to ascertain the 

laminate residual stiffness properties as well as a discussion of the effect of the 

environment on the observed failure mode. Finally, remarks on how the failure 

characteristics are related to the lay-up and environment will be followed. 

2.2. Test Specimens 

As pointed out in several papers (See Khamseh & Waas, [Ref. 2.10], 

difficulties associated with stress concentrations are encountered in the design of 

a cruciform shaped planar specimen for in-plane biaxial loading, in so far as 

achieving failure in the center of the specimen is concerned. In order to select the 

size of the specimen, a model of the notched laminated plate and grips (steel) was 

generated using the ABAQUS FEA software package. The stress analysis program 

was used to examine the effect of several specimen geometries on the stress 

concentrations due to the applied loads. The loads were applied at the boundaries 

of the loading arms by use of displacement constraints. Eight noded parabolic 

11 



plane stress elements were used to model the plate material and steel grips. Ply 

properties were entered from which ABAQUS calculates the equivalent plane 

stress constants using classical lamination theory. It was concluded from the 

results that a cruciform configuration matching the dimensions given in Figure 

2.1, was the desirable specimen shape. The word 'desirable' is used to refer to a 

stress state for which an in-plane region in the interior of the specimen (shown as 

the cross hatched area in Figure 2.1) is not influenced by the effects of the far field 

edges (i.e., edge curvatures identified as Rc in Figure 2.1) of the plate due to the 

loading. 

Specimen configurations corresponding to several values of Rc were studied 

(Khamseh & Waas, [Ref. 2.11]) using the FEA prior to arriving at a 'optimum' 

value of Rc based on the condition that the specimen with a hole does not contain 

effects associated with the stress concentration at the hole interfering with 

nonuniformities in the stress field generated on account of the edge curvatures. 

For the composite plate we studied, this 'working' area translated into a 6.35-cm 

(2.5-in.) square region in the middle of the cruciform configuration. 

The test specimens were made of graphite / toughened epoxy material 

containing Hercules IM7 (Intermediate Modulus) fiber and 977-3 toughened 

epoxy matrix, designed for operation at high temperatures. In Table 2.1, we show 

the lamina properties, based on data provided by the manufacturer. The stacking 

sequence for these symmetric laminates were as follows: Cross-Ply [o/+90]i2s, 

Angle-Ply [+6o/-6o]i2s and Quasi-Isotropic [+45/0/-45/9036S. In Table 2.2., 

Laminate material properties, calculated using generalized classical lamination 

theory(CLT) are listed. The linear elastic plane stress solution that corresponds to 

12 



the problem at hand, as given in Lekhnitskii [Ref. 2.1] was used to calculate the 

stress field corresponding to the uniaxial and equi-biaxial loading. The obtained 

solution was next verified with the strain data (far field and near the hole edge) 

that was measured in the room temperature test for each laminate type. Such a 

check yielded good agreement between test data and the 2D-elasticity solution. 

Details of the elasticity solution are given in chapter 3. 

The inplane dimensions of the test specimens are given in Figure 2.1. The 

thickness of the laminates was 0.635 cm (0.25 in.) with a 0.013 cm (0.005 in.) 

tolerance. In the center of the steel grips, a 0.724 cm (0.285 in.) channel, 3.048 

cm (1.200 in.) in depth, was machined along the length of the grip. A specimen 

arm sat in this channel, bonded to the walls of the channel with the use of 

Devcon® brand plastic steel putty adhesive, treated with release agent in order to 

allow for ease of separation of the two materials at the end of an experiment. 

More importantly, the Devcon® putty acted as an interface between the specimen 

edge and the grip surface on which the specimen 'sat' effectively smoothening out 

the interface surface irregularities between the two materials and ensuring a 

smooth load transfer. To ensure proper alignment of the specimen inside the 

channel (i.e., ensuring reasonably centered seating of the specimen inside the 

channel), metal shim plates of various thickness were added to both sides of the 

specimen to minimize any gap inside the channel. 

13 



2.3- Loading Apparatus 

The biaxial loading frame has four load actuators capable of exerting tensile / 

compressive loads of 222 kN (50,000 lbf) when mated to a 20.7 MPa (3000 psi) 

hydraulic power supply. It should be noted that each of the actuators can be 

programmed to operate in a load or displacement feedback control mode (via the 

use of a load cell or displacement transducer) fully independent of the other three 

cylinders, thereby allowing for both uniaxial as well as biaxial tests. Two load 

cells were used in the system, one along each loading axis, each rated for a 

magnitude of 222 kN (50,000 lbf) in tension and compression. 

The loaded ends of the specimen were clamped for uniaxial and biaxial 

loading cases. The 2.00 in. long clamp holders contained grooves of 0.2 in. in 

depth and 0.3 in. in width. The test specimen was inserted into the grooves and 

the remaining gap in the groove was taken up by mild steel shims. The center of 

the holders were marked and aligned with the center of the specimens and 

loading apparatus in order to ensure a uniform symmetric loading. A ball joint, 

positioned along the loaded axis, was included to minimize bending effects. 

2.4. Radiation Heater Setup 

To perform a compression test at the elevated temperature, a feedback- 

controlled radiation-heating element with an insulation tunnel (Figure 2.3) was 

designed and used. Special strain gages for high temperature (mounted with high 

temperature glue and lead wire insulated for thermal protection) were used for 

the test. To ensure a steady temperature in the enclosed test chamber, four 
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locations in the test chamber were used to monitor temperature. The heating rate 

was limited to be very slow (2°C / min). In addition, thermocouple gages placed 

inside the specimen cutout edge and on the specimen surface were used to verify 

that the specimen temperature was fairly even (less than 2°C change from 

location to location). The load cell and the loading frame were cooled by 

circulating water through a copper pipe wrapped around both parts. The 

maximum temperature of the tests was limited to 200°C (392°F), which was the 

manufacturer specified limit of the strain gage. 

2.5. Data Acquisition 

A 50,000 lbf load cell was used to obtain a load time history for the far field 

applied load. Surface strain measurements at various locations on the specimen 

were recorded with strain gages. Strain gages were mounted along the edges of 

the hole, as well as in the corresponding far field region. A set of two additional 

strain gages were mounted inside the hole, along the wall thickness, in order to 

record changes in strain in the out of plane (through the thickness) direction, 

revealing failure initiation (Figure 2.4). Strain gage readings, along with load cell 

readings were monitored & recorded using a commercial data analysis software 

package (LabTech® Notebook) via an analog to digital (A/D) converter. The data 

sampling rate was 5 samples / sec at the loading rate of 0.0001 inch / sec. The 

general arrangement of test setup is shown in Figure 2.5. 
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2.6. Test Procedure 

The 48 ply composites were tested under uniaxial and 1:1 (in far-field 

displacement) biaxial loading at both room temperature and 200°C in order to 

understand the failure mechanisms and how they are affected by temperature. 

The catastrophic nature of the failure in composites and the additional 

limitation placed upon the visual investigation of failure initiation and 

progression suggested a displacement-controlled mode for the tests (as opposed 

to the load control). This facilitates examination of specimens loaded to initial 

(local) failure but recovered prior to global failure in a displacement feedback 

control mode. 

Each opposing pair of pistons was programmed to move a certain distance in 

a specified time interval. Preliminary results indicated that a rate of 0.381-cm 

(0.15 in.) in 25 minutes (0.0001 in. / sec) for piston travel would assure a quasi- 

static test. This resulted in a far field strain rate of approximately 17 |_is /sec (cross 

ply), 14 p.s /sec (angle ply) and 19 \xe /sec (quasi-isotropic). The rate is reverse 

calculated from uniaxial strain measurement. The influence of hole size on the 

failure mode had been established and verified before (Khamseh and Waas, [Ref. 

2.10-11]). Therefore, in the present study one hole size (0.5 in. Diameter) was 

chosen for all specimens. 

Each test consists of loading a particular type of laminate until global failure 

first, to estimate the ultimate strength of the specimen. This information is used 

subsequently to aid in unloading specimens that have failure initiated but not 

reached their ultimate load carrying capacity. A sudden nonlinear (with respect 
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to a far-field load component) increase in strain inside the hole (strain gage 

placed through the thickness on the hole edge) indicates that there is a failure 

initiation at the hole edge of the specimen, even though there may not be a sign of 

global failure of the specimen. 

During the heating cycle, the loading piston was separated to ensure free 

thermal stress heating, and thermal strain was measured and recorded to 

compare with actual strain due to loading. Typical strain gage test data plotted as 

a function of load is shown in Figure 2.6. For a cross ply laminated loaded in 

equibiaxial compression at the room temperature. As expected, the response is 

"symmetric" since the cross ply laminate has equal stiffness along the loading 

direction. Detecting localized failure was done by following the through thickness 

strain, as shown in Figure 2.7 for a uniaxial cross ply specimen at elevated 

temperature. Test was stopped as soon as any nonlinear strain increase was 

observed. These unloaded specimens were sectioned and observed under an 

optical microscope in order to examine the failure initiating mechanisms (kink 

banding, micro-buckling, fiber/matrix interface cracking, matrix cracking etc.). 

Both the in-plane and out-of-plane views of the failed region were examined and 

digital photomicrographs were next acquired. Same procedure was used for the 

rest of specimens. Typical experimental results are shown in Figure 2.8 and 2.9. 
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2.7- Room Temperature Uni & Biaxial Compression of 48 Ply Notched 

Laminates 

Cross ply laminates show the typical kink banding failure mode (also 

identified before by a number of researchers) [Ref. 2.2-2.12] at around a far field 

stress of 44 Ksi (Table 2.3). Failure initiates in the zero plies, at the hole edge, 

and propagates in a direction that is perpendicular to the direction of applied far- 

field load. Both inplane and out-of-plane kink banding occur in the zero plies. In 

Figure 2.10, a typical view of the out-of-plane kink band is shown. The surface 

strain at the hole edge in the direction of applied load at failure initiation is 

7,500ju£ and the corresponding far field strain is approximately 3,ooo//£. When 

the damage propagates in the form of kink bands, the fiber/matrix interface is 

completely severed in a number of fibers within the kink bands. In addition, the 

kink banding also introduces interlaminar separation between the kinked ply and 

the neighboring 900 plies. 

The failure of the angle ply specimens subjected to the same type of loading is 

quite different. As indicated in Figure 2.12, the angle ply laminates when stressed 

in the Y-direction, fail by a mechanism of fiber matrix shearing. The failure is 

sudden so that the initiation and final failure occur almost at the same time. 

Because the strains near the hole edge are much larger than elsewhere, the failure 

initiates at the hole edge and traverses along the 6o° fiber angle (the crack runs 

through the matrix between the fibers). It appears that the -6o° fibers running at 

an angle to the crack path do not provide the requisite crack bridging toughness 
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to arrest the crack, so that once initiated the specimen is "split" cleanly along a 

line at 6o° (Table 2.4.). 

Quasi-Isotropic laminate specimens fail by both inplane shear failure and 

kink banding simultaneously (Figure 2.13). Whether kink formation in the o° 

plies or fiber/matrix interface failure in the angle plies is dominant is determined 

by the specimen characteristics (stacking sequence, individual imperfection, etc.) 

and the in-situ shear response of the matrix. This aspect will be discussed later in 

this thesis (chapter 7). In the present case, shear failure along the fiber/matrix 

interface led to catastrophic failure throughout the tests. Although there was 

evidence of kink band formation observed after the test, the fiber/matrix 

interfacial failure in the 450 degree plies was seen to be the dominant event that 

propagates the failure starting at the hole edge (Table 2.5). 

The main difference in response of the laminates between the remote uniaxial 

and the remote equibiaxial displacement loading is not in the mechanism of 

failure but the magnitude of far-field loading necessary to achieve failure 

initiation. A remote equibiaxial compression loading tends to relieve the 

compressive stress gradient away from the hole, as compared with the uniaxial 

loading (see chapter 3). For the cross ply case, this combined effect due to biaxial 

loading does not show much of an effect on the magnitude of the failure initiation 

stress, because the failure mechanism is initiated by a fiber instability. However, 

the angled ply and the quasi-isotropic specimen show different far field failure 

initiation loads because the failure mechanism is governed by the state of shear at 

the matrix, which is a strong function of ply angle and overall stacking. 
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For the case of cross ply laminates, since there are only o° / 900 plies, failure 

initiation occurs by kink banding in the o° plies, starting from the hole edge at a 

position that is perpendicular to the direction of loading. Ideally, both kink bands 

(on either side of the hole) should happen at the same time, but due to material 

non-homogeneity or a slight perturbation of the symmetry of loading, one of the 

two kink bands form first, then followed by the other. The kink band formation 

leads to interlaminar cracking between the kinked ply and the adjacent 900 ply. 

For a angled ply laminates, failure initiates along fiber/matrix angle (6o°) 

direction. Once initiated, the failure propagates through the thickness 

catastrophically, which shows the fibers in the opposite angle can not withstand 

the energy release along the failure plane. 

A quasi-isotropic laminate shows competition between shear failure in the 

+45/-45 lamina and the 0/90 lamina. The experimental results show that quasi- 

isotropic laminate fail by interfacial failure along the ±45° plies, however it is 

postulated that this mechanism is triggered by the kink banding in the zero plies. 

2.8. Elevated Temperature 

At elevated temperature, a new parameter emerges to influence the 

mechanism of failure. Because the matrix properties undergo changes in 

mechanical properties (chapter 6) than the fiber as temperature increases, the 

matrix sensitive mechanical properties of laminates such as transverse modulus 

and shear modulus are highly affected at the elevated temperature. This behavior 

is closely related with the change in matrix property associated with the shear 
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stress vs. shear strain response, as will become evident later in chapter 6. 

Furthermore, due to the mismatch in the coefficients of thermal expansion, the 

nature of the fiber / matrix interface is also changed. In addition, the matrix rich 

region between plies that control the interlaminar strength is also affected. 

As in the room temperature tests, failure initiation is sensed by a sudden 

increase in the through thickness (out of plane mode) strains, which allows the 

unloading of a specimen for post-failure microscopic examination of regions near 

the hole edge. 

Cross ply laminates show extensive kink formation just as in the room 

temperature case. Compared to the room temperature case, failure occurs at a 

lower load (See Table 2.3). Again, the kink banding initiates at the hole edge and 

propagates in a direction perpendicular to the direction of loading (Figure 2.10). 

Noticeably, the out of plane failure is very extensive. This observation may point 

to the reduced interlaminar strength at elevated temperature, for the reasons 

discussed above. Figure 2.11 shows the appearance of the kink bands when 

viewed in the through the thickness direction. 

In the case of the angle ply laminates, the drop in failure load at high 

temperature is not as drastic as the cross ply laminates (Table 2.4), but the 

maximum strain at the hole is reduced to about half when compared to the room 

temperature case. An examination of the failed angle ply specimens reveal that 

the fiber / matrix interfacial strength is important in controlling the failure 

(Figure 2.12). 

Quasi-Isotropic laminates (Table 2.5) show a combination of the different 

failure modes, however, fiber/matrix shear failure is still the dominant failure 
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mechanism. A band of damage consistently propagates along the +45 / -45 line 

from o° hole edge, in the form of interfacial fiber/matrix cracking indicating that 

this is the form of energy release at the failure. 

2.9. Concluding Remarks 

The experimental results of a series of uniaxial and equibiaxial inplane 

compressive loading experiments on notched composite laminated plates under 

room temperature and elevated temperature conditions were investigated in this 

chapter. Three types of 48 ply graphite/epoxy composites were studied in order 

to understand their compressive failure mechanisms. 

The laminate stacking sequence was selectively designed to isolate the 

different failure mechanisms that operate in angle plies and plies oriented in the 

loading direction. In specimens containing plies along the direction of the load 

(cross ply), uniaxial compression leads to fiber kink banding. This same scenario 

persists at both room and elevated temperature. 

The angle ply specimens show failure along the fiber / matrix interface. The 

failure persists either at +6 or -9 angle or both. Fibers across the line of failure 

were broken due to the large amount of energy released as the interfacial crack 

propagates rapidly. At elevated temperature, the same failure mechanisms 

persist, but at different magnitudes of far-field loading. Under equibiaxial 

compression, the remote load to initiate failure at a given temperature is higher 

than the uniaxial case, whereas for cross ply laminates there is no appreciable 

increase in load between the uniaxial and biaxial cases at a given temperature. 
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Further, for a given loading (uniaxial or biaxial), the failure initiation load 

decreases for cross ply laminates, whereas there is not a noticeable decrease for 

the angle ply laminates. 

The failure of the quasi-isotropic laminates (Figure 2.13) involves a 

combination of kink banding and fiber/matrix interfacial failure, although in 

every case, the interfacial failure/matrix failure is dominant in releasing the 

stored energy at failure. The magnitude of remote failure initiation loads between 

the loading cases at a given temperature as a function of temperature for a given 

loading case (uniaxial or biaxial) is very much like the angle ply laminates, 

although the difference were much larger for the angle ply laminates 

From test series of test results, and the loads reported in Table 2.3 through 

Table 2.5, the correlation is now evident. This can be seen by comparison of the 

room temperature failure initiation loads with the corresponding loads at high 

temperature. In cross ply laminates there is a noticeable decrease in the failure 

initiation loads between room and high temperature whereas such a reduction is 

hardly noticeable in the angle ply and quasi-isotropic laminates. This observation 

shows that the mechanism of failure initiation in cross ply laminates (fiber 

instability followed by kink banding) is strongly influenced by the matrix, since 

the mechanical properties of the matrix has been degraded at the high 

temperature (to be discussed in chapter 6, later). On the other hand, the 

mechanism of failure initiation in angle ply laminates and quasi-isotropic 

laminates is not affected as much as cross ply laminates by temperature. 

On the other hand, at a given temperature, biaxial loading reduces the failure 

initiation load for cross ply laminates, whereas, for the angle ply and quasi- 
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isotropic laminates this trend is reversed. These findings are explained later, in 

conjunction with a micromechanics based finite element analysis (chapter 7) and 

a simple stress analysis (chapter 3). 
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2.io. Tables and Figures 

Material En (Msi) E22 (Msi) G12 (Msi) V12 Thickness (in) 

IM7 / 977-3 Epoxy 23-5 1.21 0.72 0.30 0.0052 

IM7 Fiber 42 0.25 2.756 E-04 

977-3 Epoxy 0.7 0.34 2.444 E-04 

Table 2.1 Zero ply material properties of the 48 ply graphite / 977- 3 epoxy 
composites 

Laminate Type      Stacking Sequence     Ex* (Msi) Eyy(Msi) Gxy(Msi) vxy 

Quasi-isotropic [+45/o/-45/9o]6S 8.828 

Cross-Ply [o / 90]i2s 12.401 

Angle-Ply [+60 / -6o]12s 1.492 

8.828 3-372 0.309 

12.404 0.7119 0.029 

7-383 4.698 0.309 

Table 2.2 Laminate material properties as determined from classical 
lamination theory (CLT) using the properties from table 2.1 
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Specimen 

Type 

Temper 

ature 

(C°) 

Loading Type Failure 

initiation load 

(Ksi) 

Max. Hole 

Strain (fis) 

Failure Mode 

Cross-Ply 25 Uniaxial 44 7,500 Kink at o° edge 

Cross-Ply 200 Uniaxial 19 2,700 Kink at o° edge 

Cross-Ply 25 Biaxial 37 6,600 Kink in 0, 900 edge 

Cross-Ply 200 Biaxial 18 2,080 Kink in 0, 900 edge 

Table 2.3. Cross Ply Experimental Data 

Specimen 

Type 

Temper 

ature 

(C°) 

Loading 

Type 

Failure 

initiation 

load (Ksi) 

Max. Hole 

Strain (ue) 

Failure Mode 

Angle-Ply 25 Uniaxial 22.5 6,600 Shear Failure (+60 / -60) 

Angle-Ply 200 Uniaxial 22 3,284 Shear Failure (+60 / -60) 

Angle-Ply 25 Biaxial 35 4,500 Shear Failure (+60 / -60) 

Angle-Ply 200 Biaxial 31 2,200 Shear Failure (+60 / -60) 

Table 2.4 Angle Ply Experimental Data 
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Specimen Type Temper 

ature 

(G) 

Loading 

Type 

Failure 

initiation 

load (Ksi) 

Max. Hole 

Strain (\ie) 

Failure Mode 

Quasi isotropic 25 Uniaxial 21 6,600 Shear Failure (+45 / -45) 

Quasi isotropic 200 Uniaxial 19 3,900 Shear Failure (+45 / -45) 

Quasi isotropic 25 Biaxial 26 4,443 Shear Failure (+45 / -45) 

Quasi isotropic 200 Biaxial 24 2,872 Shear Failure (+45 / -45) 

Table 2.5 Quasi-Isotropic Experimental Data 
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X 
-> 

2.5 in. 

5.5" x 5.5" Cruiciform Specimens, Re = 0.25 

HERCULES IM-7/977-3 (Toughened Epoxy 

Resin) 

48 Ply Plate, 0.5" Hole Diameter, 0.25" thickness 

Cross-Ply: (o/9o)12s 

Angled Ply: (+6o/-6o)i2s 

Quasi-Isotropic: (+45/o/-45/90)6s 

Figure 2.1 Specimens 
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B 

Test Specimen 
(Cross Hatched) 

Figure 2.2 Test Setup 
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CHAPTER 3 

GENERALIZED PLANE STRESS ANALYSIS OF A NOTCHED 

LAMINATED COMPOSITES PLATE 

3.1. Introduction 

One of the main advantages of laminated composite materials is that their 

overall macroscopic material properties can be manipulated to provide useful 

characteristics for a specific purpose prior to the manufacturing process. The 

resulting laminate is usually macroscopically orthotropic. It is well accepted that, 

in spite of a few shortcomings, such as the ignorance of interlaminar stress 

components (from assumption of a plane stress state within each lamina), 

Classical Laminated Plate Theory (CUT) plays an essential role in obtaining 

solutions of macroscopic behavior of the laminate. The macroscopic means that a 

level of discretization that ignores the detailed structure of a single unidirectional 

lamina, but still one that incorporates the non-homogeneous nature of the 

composite in the thickness direction. The main assumptions of CLT are as 

follows: 

1. Each layer of the laminate is homogeneous and orthotropic. 

2. The laminate is thin with its lateral dimensions much larger than its 

thickness and is loaded in its plane only, i.e. the laminate and its layers are 
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assumed to be in a plane stress state, just as in classical plate theory 

[Timoshenko, Ref. 3.1]. 

3. All displacements are small compared with the thickness of the laminate. 

4. Displacements are continuous throughout the laminate. 

5. In-plane displacements vary linearly through the thickness of the 

laminate, i.e., u and v displacements in the x- and y- directions are linear 

functions of z, the coordinate normal to the plane of the laminate. 

6. Transverse shear strains jxz , jyz are negligible. This assumption and the 

preceding one imply that straight lines normal to the middle surface 

remain straight and normal to that surface after deformation. 

7. Strain-displacement and stress-strain relations are linear. 

8. Normal distances from the middle surface remain constant, i.e., the 

transverse normal strain sz is negligible. 

Thus, CLT treats each layer of the composite laminate as being a single layer 

of homogeneous and anisotropic material whose equivalent properties in terms 

of the constituents (fibers and matrix) are found by the rule of mixtures, the 

modified Halpine-Tsai equation [Ref. 3.2] or the generalized self consistent 

method [Ref. 3.3]. Following CLT, the relations between the inplane stress 

resultants and inplane strains can be conveniently derived along with the 

moment-curvature relations. Once these relations are obtained, the entire 

laminate can be characterized as being a single anisotropic and homogeneous 

structural element. While a complete account of CLT is beyond the scope of this 

thesis, it is relevant to point out that an important assumption in CLT is that each 

lamina of the laminate is in a planar state of stress. 
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The chief violators of this assumption, the stress components azz, tfyz, Oxz, (z 

being the coordinate in the thickness direction) are found to persist in a singular 

fashion at a narrow boundary layer on the order of a lamina thickness close to 

any free edge of the laminate. This result known as the free edge effect has been a 

topic considered be many researcher. This effect was first exemplified by Pagano 

and Pipes [Ref. 3.4-3.5] who considered a particular boundary valve problem and 

used the finite difference method to obtain a numerical solution [Ref. 3.5]. This 

problem was re-considered by Wang [Ref. 3.6], who used linear elasticity theory 

to analyze each layer of the lamina and obtained a formal solution. In the period 

in between, other researchers [Ref. 3.7-3.12] have introduced various levels of 

sophistication in an attempt to establish the usefulness of knowing the detailed 

three-dimensional stress field within the boundary layer. 

The presence of a singular stress field at a free edge is not surprising as it is 

well known that a stress singularity exists at the intersection of an interface (ie., 

the common boundary between two distinct materials along which continuity of 

tractions and displacements hold) with a free boundary (Bogy [Ref. 3.13]). 

However, to obtain the complete solution to a boundary valve problem, using 

anisotropic elasticity theory to analyze each lamina, for a laminate containing 

several laminae is a lengthy and cumbersome process. Indeed, it is fair to say that 

such analytical solutions exist only for very special cases of simple loading and 

geometry. 

At present, the use of numerical techniques such as finite elements and finite 

difference play a major role in characterizing the free edge effect in composites. 

What must be kept in mind, however, is that in modeling the composite as 
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consisting of alternating layers of different materials, an artificially abrupt change 

of properties across an interface is introduced. In a real laminate used in the 

laboratory, such an abrupt change is not present. Rather, it is likely to find a 

continuous but rapidly varying function of the material properties through the 

thickness. However, an exact description of such a variation would have to 

incorporate information on a microscopic scale, i.e., on the fiber-matrix level 

within each lamina, and this is not easily amenable to analytical description. 

Thus, due to a lack of better modeling capability, it is assumed that the layers are 

perfectly bonded along an interface. This produces a singular state of stress at the 

free edge/interface deduced from a linear elasticity analysis. Away from the free 

edge, i.e., on the order of a lamina thickness, the CLT results are found to be 

prevailing. 

A practically useful and technically important problem is the behavior of 

laminates with stress concentrations, because it is at these sites where damage is 

likely to initiate, resulting in life reduction due to damage growth around these 

stress concentrations. Stress distributions and stress concentrations around 

notches can be determined by linear elastic analysis, finite element methods, and 

experimental methods. 

One approach to address the problems of damage initiation and growth is 

based on concepts of linear elastic fracture mechanics carried over from 

homogeneous isotropic materials. A second approach is based on actual stress 

distributions near the notch and makes use of simplified stress fracture criteria. 

According to the average stress criterion from the latter, failure occurs when the 

average stress within a characteristic region from the notch equals the strength of 
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the unnotched material. Experimental verification of this method showed 

satisfactory agreement in uniaxial tensile loading cases. Other approaches are 

based on the same logic, proposing a characteristic region where stress 

concentration is most dominant, then attempts to match local equivalent stress 

with various macroscopic failure criteria. A recent effort in this direction is 

described by Soutis [Ref. 3.14]. 

The problem with the utilization of these approaches in addressing failure due 

to remote compressive loading is that the above macroscopic averaged stress 

criteria cannot describe the semi-microscopic characteristics of compressive 

failure mechanisms such as kink banding, which are highly localized with each 

constituents (fiber and matrix) interacting with each other. All macroscopic 

description of these mechanisms ignore the essential details in the damaged 

material, just as, for example, continuum description of fluid mechanics fails to 

describe turbulent flow transition mechanism, where the required length scale 

needed to describe the phenomena is lacking. 

Our objective is to propose a different approach in making the connection 

between the macroscopic composite lamina failure mechanism and the semi- 

microscopic compressive failure mechanism. But first, it is important to 

understand characteristics of stress concentration around a notch to establish the 

basis of our approach. Based on the theory of anisotropic elasticity [Ref. 3.15], the 

stress distributions around a circular hole in an infinite plate can be obtained. 

In this chapter, the 48-ply laminate containing a circular hole is modeled 

along the lines of CLT as an equivalent and homogeneous anisotropic plate. Then, 

by dimensional considerations where the width and length of the plates are 
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several times the hole diameter, the two dimensional stress state of an infinite, 

homogeneous and anisotropic plate containing a circular cutout and subjected to 

a remotely applied planar state of compressive stress is developed (Figure 3.1). 

Based on this result, the variation of stress gradient for various hole size will be 

investigated.   The   severity   of  stress   gradient,   which  is   characterized  by 

—^-    and the length scale associated with this gradient will be investigated. 

An outline of the method used to obtain the stress, strain and displacement 

distribution will be given along the lines of Lekhnitskii [Ref. 3.15] who treated the 

similar problem for an elliptical cutout. The solution presented in [Ref. 3.15] will 

be used and specialized to the case of a circular hole as described in [Ref. 3.16] 

3.2. Solution Outline 

Defining the problem coordinates as in Figure 3.1., the equilibrium equations 

are, in the absence of body forces, 

dx        dy 
(3.1) 

dx        dy 

With the assumptions of small deformations, the strain-displacement relations 

are, 
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"HI 

_ du      _dv 
x    dx   y    dy 

dv    du 
£    = +  

dx    dy 

(3-2) 

Then the single equation describing the compatibility between the three strain 

components sx, sy, Sxy, is given by, 

a^^JJf^ (33) 
dx2       dy      dxdy 

The coordinate axes are chosen conveniently to coincide with the axes of 

orthotropy of the laminate. With this choice, the strain-stress relation for a 

generalized plane stress state is 

£x ~EX 

VyxOy 

Ey 

£y ~Ey 

VXy°x 

Ex 

£xy 
1 

axy 

(34) 

xy 

with, 

r xy yx 

~E~>=~E~y 

A stress function F (x, y) defined in the manner described below is chosen 

such that (3.1) is satisfied identically. 
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DXD2D,D,F = Q, (3.8) 

where,    \n are the roots of the characteristic equation associated with (3.6), 

namely, 

y + (E ^ 
G 

ju2+^r = 0. (3-9) 
Ey \   *y J 

The |Lii are called complex parameters. These can be considered as numbers 

that characterize the degree of anisotropy in the case of plane problems. Their 

values give a measure of departure from the isotropic case, for which always Hi = 

(j,2 = i, and |HI| = |^2| = 1, For an orthotropic material, there are three different 

cases of interest: 

I: Hi = ai, \i2 = bi (purely imaginary and unequal) 

II: Hi = |a2 = ai (equal and imaginary) 

III: Hi = a + bi, \x2 = -a + bi (complex) 

The above designations of cases follows from the fact that the roots of (3.9) 

can be categorized as /ux,/u2,iux,/u2, where an overbar denotes a complex 

conjugate. Apart from four exceptional cases as noted in Lekhnitskii [Ref. 3.15], 

the roots of (3.9) are always complex. For materials considered for this thesis, 

cases (I) & (III) are of interest. In these cases, the solution to (3.8) can be written 

as 

F = JJP,(x + //,v) (3.10) 
;=i 
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Where F^x + ^y) are functions of the argument (x + ft,y). Let zx = x + ^y 

and z2 = x + ^2y denote complex quantities. Then the solution of (3.8) can be 

expressed as 

F = «[F1(z1)+F2(z2)] (3.11) 

Where 9? denotes the real part of a complex quantity. 

Introduce 

^i(zi) = - 
dz] 

HF (3'12) 

dz2 

Then using (3.5) together with (3.4) and (3.2), one obtains 
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axy = -2^\ju^;(Z]) + n2(j>'2 (z2)] (3.13) 

u = 2d\\p^l{zi) + p2^2{z2)]-my + u0 

v = 2^[q^{z,)+q2</>2{z2)]+mx + v0 

where co characterizes a rigid body rotation, and u0, v0 denote rigid body 

displacements in the x, y plane. The quantities ph p2, qi, qz are given by 

P\ 
E/]    EX 

Pi 
1           v 

Ex          Ex 

tfl 
1 

#2 
Ex          E 

1 

Mi 

(3-14) 

Thus, the stress function F has been expressed in terms of two unknown 

functions Fj(xi), F2(x2). These functions are to be determined such that they 

satisfy the appropriate boundary conditions of the particular problem. Once this 

is achieved, a complete solution to the particular boundary value problem is 

obtained by using (3.12) and (3.13). Using the method described above, a 

collection of solved problems can be found in Lekhnitskii [Ref. 3.15], where the 
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complete generalized plane stress solution of an infinite plate containing an 

elliptical hole and loaded as shown in Figure 3.1 is also given. This solution is 

obtained as the superposition of two problems. First, a plate without a cutout 

under uniform far field compression is considered. This is designated the 'zero' 

problem. Then a second problem is considered where a plate with the elliptical 

cutout is considered, loaded on the cutout boundary by tractions which are equal 

and opposite to those found on a similar but fictitious elliptical boundary of the 

zero problem. This is designated the 'first' problem. The zero problem is 

straightforward and the solution is, 

crr = 

CTr = 

<Jxy = 

-Pcos2^ 

-Psin2^ 

-Psin^cos^ 

u°=P 
1 cos <t> sin d> 
 T— — y     '— 

(3-15) 

v° = P 
sin S cos d> 
——-V    — 
E.        xy   E V   ~* 

y 
y   J 

The 'first' problem is more involved and requires obtaining JFI(ZI) and F2(z2) 

such that the stresses decay to zero at large distances form the cutout. The 

solution as obtained by Lekhnitskii [Ref. 3.15], is given below. 
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\M]    Mi), '«=1 

tj= J y . ./' (3.16) 

Zj=x + ftjy,j = 1,2 

with, 

_    p 
fy =—cos^(asin^-iZ)cos^) 

a, = sin^(asin^-i6cos^) (3.16b) 

am=bm=0,m>2. 

Substituting (3.16a and b) in (3.13), the stresses and displacements associated 

with the first problem are obtained. Thus, the complete solution to the original 

boundary value problem is 

o-x=o-°+°"i 

cry=a°y+al 

oxy=a°xy + cr\y (3*17) 

u = u° +ux 

v = v0+v' 
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This solution can now be specialized to the case simulating the present 

experimental situation by setting 

<|> = o and a = b = radius of circular hole 

Let 'a' denote the radius of the circular hole. Then, 

a°=0, 

<y=0 

u°=-P 'p 

v°=-P 

F 

xy 

V    Ex    J 
y 

(3.18a) 

ü     p 
b, =1—a 

a, =0 

(3.i8b) 

A (,\     (   iV^')        iPa (i->,) 

'j+h'-^-t). 
(3.18c) 

*('')-'-r2(Ä-ftV'ft) Zj+^/-a!(l + ^) 

Here i is defined as 12 = -1. 
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3.3« Results 

Using (3.13), (3.15), and (3.17), it was possible to calculate any stress 

component distribution (and corresponding displacement distribution) around 

the cutout. The result for the displacements and some of the stress components 

was incorporated in a finite element analysis (Figure 3.5) for use as the loading 

condition for a micromechanics based response analysis to be explained in 

chapter 4. 

It is our objective in this chapter to understand the characteristics of the 

dominant stress gradients at the hole edge. The loading case considered is 

uniform compression at the far field edge in the x direction as shown in Figure 

3.1. Only the variation in ax was considered in this chapter, because this 

component of compressive stress is the most dominant cause of local failure at 

the hole edge, which was observed from our experimental work. In the case of 

equibiaxial loading, the method of superposition is used to obtain the variation of 

C7x. 

In Figure 3.2, the origin of the coordinate is at the hole center, and the CTX(O,I/) 

distribution to the point where C, = — becomes 1.1 (110% of far field loading) is 

indicated. All length dimensions are non-dimensionalized by the hole diameter. A 

typical stress distribution around the hole edge is as shown in Figure 3.3. As can 

be seen in Figure 3.3, the local stress peaks at the hole edge then starts to die out 

as y increases. The dashed line indicates equibiaxial remote compression loading 

and the solid line indicates uniaxial compression. It is an interesting fact that the 
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stress distribution in non-dimensional form is approximately independent of the 

hole size. This observation implies a characteristic length scale associated with 

the stress concentration effect, based on geometrical similarity. For the case of 

cross ply [0/90] 12s laminates under uniaxial compression, this characteristic 

length scale was lucr=y^y =1.28. For the case of an equibiaxial loading, 

l"      Yd ~1-"' /      r 

Previous research reported in Whitney & Nuismer [Ref. 3.17] and Nuismer & 

Whitney [Ref. 3.18], attempt to characterize the hole size effect through the point 

stress criterion (PSC) and the average stress criterion (ASC). According to the 

PSC, failure occurs when the dominant tensile strain ax (0, v) at some distance 

y = dB away from the hole reaches the unnotched tensile strength of the material 

(note that PSC and ASC were introduced in the context of tensile loading, but in 

principle would be applicable for compression loading as well). On the other 

hand, the ASC is based on the assumption that failure occurs when the average 

value of crx(0,y) over some fixed distance a0, from the hole edge reaches the 

unnotched tensile strength a0 of the material, i.e. 

1   rR+a> 

a. 
fR

+a°°A°>y)dy = °o        (3-19) 

Notice that these criteria are transparent to the details of the failure 

mechanism observed via our experimental results as described in chapter 2. They 

are based on averaged macroscopic values of stress that do not reflect 

deformation mechanisms at the fiber/matrix level. Furthermore, these criteria 
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can produce the same results for differently stacked laminates (i.e. laminates with 

different lay-ups, but with the same macroscopic averaged mechanical 

properties). 

While the stress concentration factor is independent of the size of the hole, the 

stress gradient factor (G.F.) as defined in (3.20) is dependent on the hole size. 

The G.F. is defined as 

(G.F.r=^ K       J      dy 
(3-20) 

where, C, = -±- and y = — . 

G.F. indicates the severity of the gradient as one moves away from the hole 

edge along the y axis. A larger G.F. indicates a smaller hole while a smaller G.F. 

indicates a larger hole for a given material. Furthermore, for laminated 

composite materials, G.F. is, in general also a function of mechanical properties, 

but for isotropic material, G.F. is only influenced by the hole size. In Figure 3.4, 

we have shown a plot of G.F. as a function of hole size. In Figure 4.10, we have 

indicated the experimental result of Khamseh & Waas [Ref. 4.2] for uniply 

composite laminates under uniaxial compression, scaled appropriately. Notice 

that the trend of failure strength is similar. In other words, G.F. is a reasonable 

indicator of the trend in failure as a function of hole size. However, G.F. alone is 

insufficient to provide an absolute means of compressive strength, unless at least 

one point on the curve can be calibrated against some known experimental data 

or an analytical mechanism based prediction. 
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The approach advocated in this thesis is a hybrid-local-global model, where 

'global' indicates resultant stress, strain and displacement distribution calculated 

using CLT and 'local' indicates a detailed analysis carried out at the fiber/matrix 

level. The local analysis is the subject of the next chapter. 
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3.4. Figures 

YAY Y Y T Y Y Y Y 

A > ̂ > ^ t < t K     > <   > k   > k  ) k   > k   > U (   > ^   > '  t 

Figure 3.1 Uniaxial and Biaxial loading case 
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Figure 3.2 Stress Gradient Definition 
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Figure 3.3 Nondimensional Stress Gradient for Cross-ply Laminates (dr = 2 R) 
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CHAPTER 4 

MICROMECHANICS-BASED FINITE ELEMENT MODEL FOR 

COMPRESSrVE FAILURE OF NOTCHED LAMINATES UNDER 

REMOTE COMPRESSrVE LOAD 

4.1. Introduction 

This chapter is based on the publication by Ahn and Waas [Ref. 4.1], which 

was concerned with a micromechanics based finite element analysis for the 

failure of notched single ply (uniply) model laminates. Experimental results 

obtained by Khamseh and Waas [Ref. 4.2] formed the basis of this model. This 

chapter sets the stage for the chapter 7. In chapter 7, the model presented here is 

extended to analyze multidirectional laminates, with a view to explaining the 

experimental data presented in chapter 2. The reader can skip this chapter and 

chapter 5 (a micromechanics analysis of (±6)ns angle ply laminates) and go onto 

chapter 6 uninterrupted. 

Of concern in the present chapter is the development of a micromechanics 

based model to predict the onset of failure in laminated composite plates 

containing a stress raiser in the form of a circular hole. The development of the 

model relies on previous experimental work described in Khamseh and Waas 

[Ref. 4.2], which provides experimental data for the compressive strength of 
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uniply notched composites as a function of notch size. Because of the importance 

of the experimental work that led to the development of the model presented 

here, a brief description of the experimental findings reported in Khamseh and 

Waas [Ref. 4.2] will be explained next. 

4.2. Experimental Summary 

Khamseh and Waas [Ref. 4.2] experimentally studied the effect of notch size 

on the compressive strength of laminated plates. Specially prepared uniply 

laminates were studied. A single lamina of graphite/polymer was embedded 

between two transparent ULTEM polymer sheets and cured according to the 

manufacturer's  recommendations.  The  measured properties  of the  uniply 

laminate (UL) are given in Table 4.1. The transparent nature of the UL provides a 

convenient means of measuring details pertaining to the dominant failure 

mechanism of kink banding. Kink band width, length and extent were measured 

without having to deply the laminate. Specimens measuring L = 1.68, S = 1.68, 

and t = 0.275 (all in inches, Figure 4.1), were prepared with a single centrally 

located circular cutout of varying diameter inserted with a diamond drill. Remote 

uniaxial loading along the zero fiber direction (x-axis) and remote biaxial loading 

(along the x-axis and y-axis) were studied. Failure initiation was detected via 

holographic interferometry for uniaxial loading that measured out of plane 

deformation. The corresponding strains were obtained via surface strain gages 

and the far-field load on the specimen corresponding to failure initiation was 
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measured via a load cell. For biaxial loading, initiation strains were obtained via 

strain gages placed near the cutout edge. 

The failure mechanism for the laminates was determined to be kink banding 

at the hole edge followed by delamination near the failure site, resulting in the 

propagation of the damage into the interior of the specimen (uniaxial). For 

biaxial loading, post-experiment microscopic examination revealed, both, 

fiber/matrix debonding and a shifted kink band. Thus, from the 

photomicrograph alone it cannot be conclusively stated whether kink banding 

proceeds or precedes fiber/matrix debonding. The transparent nature of the 

thermoplastic sheet revealed (in several specimens that were loaded to failure by 

kink banding and immediately unloaded) that no delamination was associated 

with the failure initiation. This finding establishes that kink banding (uniaxial) 

and fiber/matrix debonding with a shifted kink band (biaxial) precedes 

delamination failure; such a conclusion could not be definite, merely 

hypothetical, with opaque graphite-epoxy laminates. For hole sizes smaller than 

0.1040 in. the failure site shifts away from the hole edge and begins at the free 

lateral edge. In these situations, failure occurs globally (delamination of the 

thermoplastic/ply interface throughout the specimen) without any kink banding. 

Optical scanning of damaged sections for those specimens that failed by kink 

banding revealed three-dimensional kinking patterns. That is, during kink 

banding the o° fibers undergo large rotations both inplane (xy) and out of plane 

(xz). Of the several samples with the same hole size that had failure initiated at 

the hole edge, at least one sample was examined under an optical microscope. 

The results of the sectioning study are shown in Figure 4.2(a) and Figure 4.2(b) 
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as photomicrographs where kink banding near the hole edge is shown for the 

uniaxial and biaxial cases, respectively. Table 4.2 and Table 4.3 provide a 

comparison between experiment and analysis for remote uniaxial and remote 

biaxial loads. 

The experimental results summarized above indicate that when laminates 

containing 0° plies are loaded in compression, the fibers kink with a long 

wavelength inplane mode and a short wavelength out of plane (through the 

thickness) mode. The critical strain values for all specimens were measured via 

surface strain gages placed at the hole edge. The far field failure stress values 

were computed as the failure load (the load at which strain gage readings indicate 

a drop in value) on the specimen (monitored through the load cell) divided by the 

specimen cross sectional area in contact with the loading apparatus. The results 

obtained by Khamseh and Waas [Ref. 4.2] substantiate and confirm earlier 

results obtained by Waas and Babcock [Ref. 4-3], Waas et al. [Ref. 4-4]- In these 

investigations, opaque carbon fiber reinforced notched laminated plates were 

used. 

The main objective of the present chapter is to show that it is possible to use 

micromechanics as a basis to obtain the remote loads corresponding to failure 

initiation near the notch. Such an approach offers the possibility of designing the 

microstructure of the material to delay the onset of failure initiation. A 

parametric study to understand the effect of different fiber volume fractions and 

the effect of different fiber and mechanical properties on the observed and 

predicted kink banding is relegated to a later investigation. The micromechanics 

based modeling is described next. 
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4.3- Micromechanical modeling 

The   finite   element   method   (FEM)   is   used  for   the   solution   of the 

micromechanics model. A mesh of a region adjacent to the hole edge was 

generated using the Hypermesh® Pre/Post processing software as shown in 

Figure 4.3. In choosing this micro-region, features of the two dimensional linear 

elastic stress and strain field for a laminated plate containing a circular cutout 

and loaded remotely (Lekhnitskii [Ref. 3-i5l)> were used to aid in selecting the 

mesh size. Symmetry with respect to loading and geometry were also used in 

arriving at the initial mesh size. The two dimensional elastic stress and strain 

fields show a marked gradient that depends only on the size of the cutout. These 

gradient fields persist for distances that are about one hole radius away from the 

cutout edge. Experimental observations have revealed that the region of kink 

banding is confined to distances within the gradient field. Furthermore, surface 

strain gages placed remotely from the hole (i.e. at distances that are several radii 

away) indicated no change in value corresponding to the inception of kink 

banding. Thus in the present setting, for analytic purpose, it is possible to assume 

that kinking is a localized event, not affecting the strain state of the laminate in 

the far-field (regions that are removed from the location of the cutout). 

Obviously, the finite element results must eventually verify that such an 

assumption is reflected in the solution it produces. I will return to this point later 

in this chapter. The FEM mesh corresponds to the middle ply of the plate 

specimen only, i.e., the graphite/epoxy ply sandwiched between two thick 

ULTEM outer layers, as the focus of the FEM was to model the dominant inplane 
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kink banding failure associated with the fibrous layer. Previous work (Waas et al., 

[Ref. 4.4] and Soutis and Fleck [Ref. 4.5]) has shown that kink band width and 

geometry are influenced by a number of factors, such as the location of the zero 

plies within a laminate, the total thickness of a zero ply, the mechanical 

properties of the fibers and resin, and the stress state within the zero ply. In the 

present numerical study, a major focus is on capturing the effect of the stress and 

strain gradient in influencing compressive failure via kink banding, by adapting a 

2D planar model to capture the in-plane deformation associated with kink 

banding. 

For the FEM analysis, a rectangular mesh containing 22,650 elements (4 

noded quadrilateral plane stress) and 23,028 nodes with two degrees of freedom 

(x, y displacements) per node was chosen. Both, a first and second order plane 

stress element were used and after obtaining results for several runs, it was 

deemed that either of the two elements provided similar information; of course, 

approximately twice as many elements were needed with the first order element 

to achieve the same result, however, the use of a first order element was 

unavoidable due to limitation in modeling and applying non-homogeneous 

traction boundary conditions. To avoid shear locking, it was necessary to use 2 

rows of elements for each fiber and matrix. 

The initial mesh size (termed 'baseline model') corresponds to a rectangular 

region which is 300 fiber diameters (d/) in length and 142 fiber diameter in 

width. The elements were of length 2 df, and width 0.5 d/, such that two layers of 

elements constitute a single fiber. The matrix was also modeled with two adjacent 

elements, albeit the two matrix element differed in width from the two fiber 
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elements, taking into account the difference in thickness of the matrix such that 

the fiber volume fraction (V/-), corresponded to the specimen (57%). Starting with 

this initial mesh, convergence of the results was checked by incrementally 

increasing the mesh size until no substantial change in the salient features 

associated with kink banding was discerned (Figure 4.4 - 4.5). This process was 

carried out for several hole sizes, corresponding to those studied experimentally 

as well as for larger hole sizes corresponding to current experimental work. The 

results of a mesh sensitivity study is shown in Figure 4.6, for a configuration with 

d/L = 0.3. In this figure, the terminology indicated in the legend corresponds to 

those shown in Table 4.4, where important indicators of the salient features 

associated with such a study are tabulated. Since the initial mesh size 

corresponding to each hole size was chosen to be sufficiently large so that the 

stress gradients have diminished at the remote boundaries of the microregion, it 

was not surprising to find that the results obtained with this initial mesh were 

already within a few percent of the values obtained with increasing mesh size. In 

addition, since the cutout size is the only characteristic length of concern, the 

mesh size used to obtain converged results for various cutout sizes scaled with the 

size of the cutout. That is, a small cutout size has steeper gradients than a larger 

cutout size and thus, a smaller microregion can be used for the FEM analysis 

(and was used) corresponding to a small cutout size. 

In the context of Figure 4.3, and Figure 4.7, where H is the height of the 

microregion, it was found that H/d = constant, was satisfied to obtain converged 

results, where d is the diameter of the cutout. 
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For the elastic pre-kinking analysis, material properties obtained from the 

experiment were used as an input to determine the stresses and the 

displacements via a closed form solution as described in Lekhnitskii [Ref. 3.15], 

for an equivalent homogeneous and orthotropic plate of infinite extent remotely 

loaded by uniform tractions. On the boundaries of the mesh (Figure 4.8), the 

displacement fields obtained from the prekinking analysis were enforced as 

boundary values. For each cutout size, two response analyses were conducted; 

kink banding that is symmetric about the y-axis, i.e. kinking displacements that 

satisfy u(x) = u(-x) and v(x) = u(-x), and anti-symmetric kink banding, i.e. u(x) = 

u(-x) and v(x) = - u(-x), where u and v are the displacements in the x and y 

directions, respectively. For the symmetric case, the following boundary values 

were enforced (Figure 4.3): edge AB; u = 0, v= vp, along edges BC, CD, and DA; u 

= Up, v = vp (where the subscript p refers to the values from the displacements 

obtained from the prekinking analysis). For the anti-symmetric case, the 

boundary conditions were the same along edges BC, CD, and DA, but along edge 

AB; u = o, v = 0. Analyses corresponding to both cases were carried out and it 

was found that the case corresponding to anti-symmetric boundary conditions 

resulted in a slightly smaller maximum load and plateau load values. 

Consequently, results presented in the chapter for the response analysis 

correspond to anti-symmetric boundary conditions. 

The linear elastic stress field that persists in the early stages of loading, 

corresponding to the above geometry is non-uniform because of the cutout. This 

non-uniformity is a function of the cutout size. For small cutouts, the stress and 
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strain gradient associated with the elastic prekinked solution characterize the 

dominant features of the kink banding that is seen in the experiment. 

The displacements on the remote boundaries of the microregion were applied 

in an incremental fashion using the Riks algorithm as available in ABAQUS® 

[Riks, Ref. 4.6] and incorporating geometrical and material nonlinearity. The 

basis of this method is to use the load magnitude as an additional unknown and 

thus to control the increments taken along the load-displacement response curve. 

This approach provides solutions regardless of whether the response shows 

stable or unstable behavior. 

The matrix was modeled as an elastic-plastic isotropic solid obeying J2. 

incremental theory of plasticity with isotropic hardening. The stress-strain curve 

for the matrix was generated by employing a standard uniaxial compression test 

of the pure matrix and is shown in Figure 4.9. However, the properties of the 

pure resin are not the same as those in the composite laminate as has been noted 

before by a number of investigators [Kyriakides et al., Ref. 4.8], [Soutis and 

Fleck, Ref. 4.5]. 

One way to reflect the in-situ state of the matrix is to use the results of a shear 

test on the unidirectional composite material and back out the resin properties as 

has been done in Kyriakides et al. [Ref. 4.8]. However, a more fundamental issue 

is to recognize the role of residual stresses in the resin caused during 

manufacturing. Since the Poisson's ratio of the fibers is much smaller than the 

resin Poisson's ratio, this mismatch results in a state of residual stress in the 

fibers and resin at room temperature. These stresses can contribute to the 

difference in properties seen in pure resin tests as contrasted against those that 
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are inferred from tests on a unidirectional composite sample. A shear test to 

obtain the in-situ resin material properties is described in chapter 6 in 

connection with the multidirectional laminates examined experimentally in this 

thesis. 

In carrying out the response analysis, the entire boundary loads (and 

displacements) on the microregion were increased incrementally via the Riks 

method. Thus, this corresponds to proportional loading. The assumption here is 

that the boundary loading on the microregion is unaffected at the initiation and 

early stage of kink formation via fiber rotation, since the microregion is chosen to 

be large enough compared with the length scale associated with the stress and 

strain gradients. That is, kinking is a localized event and does not affect areas 

remote from the cutout as seen in the experiments of Khamseh and Waas [Ref. 

4.2]. 

During the loading, the resultant horizontal force (in the x-direction) as a 

function of remote boundary displacement on edge AB was recorded. A typical 

plot of this is as indicated in Figure. 4.7 for uniaxial loading, where the resultant 

load is normalized with respect to the height, H of the microsection. Similar plots 

were generated for biaxial loading conditions as well and are not presented here 

for the sake of brevity. 
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4«4« Results and Discussion 

As can be seen from the plots of Figure 4.7, the calculated resultant force per 

unit length in the x-direction (RFi / H) versus load proportionality factor, LPF 

(i.e., the factor by which the boundary displacements applied in the first step of 

the incremental Riks analysis is multiplied) curves all display similar features. 

Initially, the curve is linear, followed by an unstable unloading path from a 

maximum load, that eventually asymptotes to a constant value. 

The maximum load is referred to as a limit load while the constant value is 

referred to as a plateau load. If small initial geometrical imperfections associated 

with fiber waviness are included, then a family of curves can be generated as a 

function of initial imperfection magnitude. Such a family of curves is shown in 

Figure 4.7 where curves generated with three imperfection magnitudes are shown 

along with the response obtained in the perfect case for uniaxial loading. The 

imperfection shapes were generated by carrying out a linear eigenvalue analysis 

of the microregion and obtaining the eigenmode shapes. Next, the maximum 

amplitude of fiber waviness associated with the mode shapes was set at a fraction 

of the fiber diameter, df, to correspond to different imperfection magnitudes. 

These are indicated in Figure 4.7. As the imperfection size increases, the limit 

load decreases and eventually disappears. Then the RFi-LPF curve shows a 

smooth increase from zero to the same plateau load value that is obtained with 

the perfect case. This finding is an important result, namely that the plateau load 

is independent of the imperfection size and can be obtained by analyzing the case 

corresponding to the geometrically perfect mesh. This is observed to be true in 
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the uniaxial cases as well as the remote biaxial cases. Examination of the 

deformed shapes of the microregion and stress and strain values of the matrix 

material corresponding to the maximum load indicate that the matrix is fully 

plastic near the hole (near point A of the microregion) as well as along the edges 

and within the kink band that is to follow subsequently, while the matrix 

elements far away (near the points B, C, and D of the microregion) are still elastic 

(strains of approximately 0.027, see Figure 4.9). Thus, the use of the Lekhnitskii 

[Ref. 3.15] elasticity solution to characterize the far-field stresses and strains are 

justified. Furthermore, important quantities from the FEM results, such as the 

maximum load and plateau load are only mildly sensitive to the size of mesh 

employed as shown in Table 4.4, and also in Figure 4.6, where the effect of 

employing different size microregions has been established. This mesh 

independence is not surprising and is to be expected on physical grounds, since 

the problem under consideration is one, where the stress and strain gradients die 

out with distance away from the cutout. The gradients are determined by the 

cutout size only and thus, the problem has the requisite length scale dictated by 

the geometry of the configuration analyzed. 

Notice that the non-uniformity in the prekinking stress field coupled with a 

progressively decreasing instantaneous shear modulus of the matrix material 

provides the necessary synergy to initiate the evolution of kink banding. Beyond 

the limit load, both RFi and LPF decrease (the Riks algorithm can capture 

unstable post buckling behavior) and this decrease as can be seen for the 

deformed configurations of the mesh is due to deformation localization, close to 

the edge of the hole. The remote (far-field) loads on the specimen corresponding 
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to the limit load and the plateau load are tabulated in Table 4.2, as a function of 

hole size for uniaxial loading, while Table 4.3 provides a similar comparison for 

biaxial loading, and it appears that predictive far-field loads for kink banding 

(without regard to modeling fiber/matrix debonding) are in reasonable 

agreement with experiment, suggesting that the energy release associated with 

fiber/matrix debonding is small compared to the plastic energy associated with 

kink banding. Experimentally, whether fiber/matrix debonding precedes kink 

banding cannot be conclusively stated via post-experiment microscopic 

examination of failed specimens that showed a fiber/matrix debond and a kink 

band on the same photomicrograph. This suggests that kink banding occurring at 

a location slightly skewed with respect to the x-y axis at the hole edge (i.e., not at 

approximately 90 deg. as would be the case with uniaxial loading), could drive 

fiber/matrix debonding failure and not vice-versa. This aspect necessitates 

further experimental investigation. 

In Table 4.2 and Table 4.3, the measured experimental results for the far- 

field stress corresponding to failure initiation is also indicated. The agreement 

between experimentally measured far field failure initiation values and predicted 

values based on the plateau load are seen to follow the same trend over a 

significant range of hole sizes, although the FEA predictions are seen to be higher 

throughout. A plot of the far-field stresses corresponding to failure initiation is 

shown in Figure 4.10 and Figure 4.11, which also provides a comparison with 

experimental data. In the biaxial case, the larger of the two applied far-field 

stresses are used to present the data in Figure 4.10. 
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It is unclear why the biaxial data based on the plateau load seem to agree a lot 

better than the corresponding uniaxial data in the comparison presented in 

Figure 4.10 and Figure 4.11. This better agreement may be due to the fact that the 

biaxial specimens revealed experimentally both fiber/matrix debonding and kink 

banding, thus the experimental data account for both these mechanisms, while 

numerically, perhaps a higher maximum load and a lower plateau load would be 

predicted if one was to accommodate the possibility of capturing both of these 

mechanisms using one model. It must be noted that throughout this chapter, the 

numerical results presented correspond to converged results as far as mesh size is 

concerned. A discussion of this aspect was given earlier. It is not at all surprising 

to obtain fast numerical convergence in the present problem because the event 

under investigation is truly local and scales with the size of the cutout, which is 

the only structural length scale of importance. 

The micromechanics model that is introduced here considers a two- 

dimensional analysis of an essentially three-dimensional phenomenon. 

Furthermore, it uses the uniaxial stress-strain response of the pure matrix. As 

will be shown in chapter 6, the pure matrix response tends to overestimate the 

mechanical properties of the in-situ matrix. As a result, predicted values for the 

limit load are much higher than the corresponding experimentally measured 

failure initiation loads. Despite these shortcomings, it appears that misalignment 

and/or nonuniformities in the prekinking stress field coupled with a nonlinear 

shear response of the matrix whose modulus is continually decreasing leads to 

the type of deformation localization that is observed in experiment. The presence 

of the cutout introduces a natural length scale that is reflected in the gradients 
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associated in the prekinking stress field. Therefore, even without an initial 

geometrical imperfection, it becomes possible to simulate kink banding. The 

present problem can be contrasted against the uniform prekinking deformation 

situations that have been analyzed earlier Budiansky and Fleck [Ref. 4.7] and 

Kyriakides et al. [Ref. 4.8]. In the present study and in those earlier studies, 

however, an essentially three-dimensional situation has been modeled using a 

two dimensional approach. Thus it appears that other possible modeling 

omissions, such as the presence of fiber ends within the matrix and the three- 

dimensional random packing of the fibers (Kyriakides and Ruff [Ref. 4.15]), may 

have only a weak influence on the overall outcome of the initiation of kink 

banding. 

A complete characterization of the 3D-stress field in a laminated composite 

plate containing a cutout has been recently done by Iarve [Ref. 4.9]. 

Incorporation ofthat work in the context of the present analysis is left as a future 

task. In Iarve's work, the pre-kinking stress field accounts for the 3D stress state 

near the cutout, whereas in the present analysis, this stress state is assumed two 

dimensional. Soutis et al. [Ref. 4.10-4.11] collectively referred to as SFS have 

previously introduced predictive models for failure initiation in unidirectionally 

compressed notched composites. To use the SFS, one needs as input the 

unnotched strength of the laminate and the fracture toughness associated with 

kinking (obtained via separate additional material characterization tests). Recent 

work by Soutis [Ref. 4.12] has shown that the input parameters for the SFS could 

be deduced from the in-plane fracture toughness and the unidirectional 

unnotched compressive strength, although this requires two additional pieces of 
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data. Unlike SFS, the present micromechanics based model directly captures the 

salient features of the deformation localization; the only parameters that are 

needed as input are the material properties of the constituents (elastic and plastic 

properties of the matrix which are obtained via a single uniaxial test, and the 

fiber Young's modulus), the geometry and the stacking. The effect of stacking (i.e. 

plies other than zero plies) is accounted for via the calculation of the prekinking 

elastic displacement field which is influenced by the number, type, constitutive 

property and thickness of the layers in the laminate. These influences enter 

through the computation of the in-plane stiffness, which are needed to 

implement the Lekhnitskii [Ref. 3.15] solution for the prekinking stress and 

strain fields. 

In the SFS, the unnotched compressive strength of the laminate is needed as 

input, and it is not entirely clear that a macroscopic value of unnotched laminate 

strength may capture the same features of the failure mechanisms near a cutout 

edge. For example, it is quite possible for an unnotched laminate to fail by a 

mechanism other than kink banding, while the corresponding notched laminate 

may in fact still fail by kink banding owing to the presence of the notch that 

introduces a well defined location (due to the stress and strain concentration) for 

the failure to initiate. This does not imply that stress gradients are necessary for 

kink banding, however, the mechanics of kink banding appears to scale with 

features associated with the stress and strain gradients as has been presented 

here via a numerical analysis, and before [Khamseh and Waas, Ref. 4.2] via an 

experimental study. Further experimental work is required to shed more light on 

the issue of modeling the mechanics of a kinked zone as a crack with a linear 
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traction-crack closure law. The latter forms a strong basis for the SFS model. 

Using the SFS model, impressive agreement between experiment and analysis is 

reported in Soutis, Fleck, and Smith [Ref. 4.11]. In passing, it is relevant to note 

the recent work of Soutis and Tenchev [Ref. 4.13] who have introduced a property 

degradation model for microbuckling failure in laminates, and Soutis, Filou and 

Pateua [Ref. 4.14], who examined failure of laminated plates under biaxial 

compression-tension. 

4.5. Concluding Remarks 

A new non-empirical micromechanics based two-dimensional finite element 

model is introduced for predicting the initiation of failure in a laminated fiber 

composite plate that contains a circular cutout and loaded in multiaxial 

compression. Based on previous experimental work by the author and a number 

of other investigators, it is now established that fiber composites containing 

cutouts fail by kink banding occurring close to the cutout edge when subjected to 

compression (uniaxial), while fiber/matrix debonding is seen to occur with kink 

banding in specimens that are biaxially loaded. Exploiting the fact that this initial 

manifestation of damage is a localized event (i.e. in experiments surface strain 

gages placed remote from the cutout, are unaffected by the initial kink band that 

forms near the cutout-see Khamseh and Waas [Ref. 4.2, 4,16]), the commercial 

Finite Element package ABAQUS has been used to analyze this local event. 

Elastic material properties of the constituents and the full uniaxial stress-strain 

curve of the matrix material are needed as input. As will be discussed in chapter 6 

and chapter 7, the in-situ matrix properties do a much better job of capturing the 

actual matrix response that needs to be used in this type of an analysis. 
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Consequently, much better agreement with experimental data is reported in 

chapter 7, based on the limit load. 

The combination of a progressively decreasing modulus for the matrix and a 

nonuniform prekinking stress field whose gradients are uniquely related to the 

cutout size are sufficient to fully characterize the kink banding. The present 

model leads to reasonably good predictions for the load carrying capacity of 

composite plates containing cutouts when loaded in multiaxial compression. The 

finite element predictions of the salient features of the failure initiation event are 

found to compare favorably with experimental data. The present model provides 

a useful predictive tool for design engineers. Additionally, the model may also be 

used in an inverse manner. The model predictions can be used to understand 

how to delay kinking failure, for example, by affecting the matrix shear stress- 

strain response via chemical synthesis of the polymer matrix or by the addition of 

appropriate inclusions to the matrix. 
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4-6. Tables and Figures 

En 

(ksi) 

E22 

(ksi) 

V12 G12 

(ksi) 

Experiments 904.3 574-6 0.36 NA 

Theory, Modified 

rule of mixture 

1017.8 548.6 0.37 186.7 

Table 4.1 Laminate material Property 

Specimen Hole Size d/L, 

(d/2)inches 

Exp. Far Field 

Stress in x 

direction (psi) 

FEA Prediction 

Based on Plateau 

Load (psi) 

1 0.062, 0.0520 6,600 6,646 

2 0.103, 0.0864 4,833 5,320 

3 0.144, 0.1207 4,275 4,859 

4 0.198, 0.1660 3,8oo 4,525 

Table 4.2 Comparison of FEA predictions with experiment (Uniaxial Loading) 
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Specimen Hole Size 

d/L,(d/2) 

inches 

Exp. Far Field 

Stress in x 

direction (psi) 

FEA Prediction 

Based on Plateau 

Load (psi) 

1,2 0.062, 0.0520 10,400,10,800 10,507 

3,4 0.103, 0.0864 9,600,10,000 9,846 

5,6 0.144, 0.1207 9,000 9,215 

7,8 0.198, 0.1660 7,500, 7,000 7,730 

Table 4.3 Comparison of FEA predictions with experiment (Biaxial Loading) 

Mesh 

Used 

Dimensions 

X length xY 

length 

Imperfection 

Magnitude 

(maximum 

deflection in Y) 

Maximum 

Resultant 

Stress in 

Microregion 

(Ksi) 

Plateau Stress 

in Microregion 

(Ksi) 

Baseline 300 df x 142 df 1.81 df 37 29 

Mesh A 375 dfx 142 df 1.81 df 37 28 

MeshB 300 dfx 177 df 1.81 df 37 27 

MeshC 375 dfx 177 df 1.81 df 37 26 

MeshD 450 dfx 213 df 1.81 df 37 29 

Table 4.4 Results of the mesh convergence study. d/L = 0.3, d/2 = 0.25 in. 
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Hole edge Kink band 
Close up of region at the hole edge in 

the figure to the left 

Midply of uniply laminate 

Figure 4.2 Photomicrograph of typical kink band locations; a) uniaxial loading 
[Ref. 4.2] 
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Fiber-matrix debonding Hole edge 

Out of Plane B-B 

 2.5xl0"2 inch 
fiber 
orientation   j * 

Midply of uniply laminate 

Figure 4.2 Photomicrograph of typical kink band locations; b) biaxial loading 
[Ref. 4.2], continued 
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Figure 4.3 Region Studied by FEA 
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CHAPTER 5 

MICROMECHANICS MODEL TO PREDICT FAILURE OF ANGLE 

PLIES AS A FUNCTION OF PLY ANGLE 

5.1. Introduction 

In chapter 4 of this thesis, the kink banding failure mode was analyzed by 

using a micromechanical based finite element analysis using test results for 

uniply specimen studied by Khamseh and Waas [Ref. 4.2]. The input data for that 

model were the fiber mechanical properties, the uniaxial stress-strain response of 

the matrix, the fiber geometric properties, the spacing between fibers and the 

stacking sequence of the laminate. In chapter 2 of this thesis, it was stated that 

the dominant mode of failure for the angle ply and quasi-isotropic laminates was 

a fiber/matrix interface failure. Thus, in general, for laminates where zero plies 

co-exist with other angle plies or where there are no zero plies, the possibility of 

fiber / matrix interface failure must be incorporated into any predictive analysis 

capability. The objective of this chapter is to develop a micromechanics based 

finite element analysis of angle ply laminates that are loaded uniformly in 

compression. Because the dominant loading in compression is with respect to the 

fiber direction, the stress states within a single lamina, in the material principal 

coordinate directions now involve <r, (in the fiber direction), a2 (perpendicular to 
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the fiber direction) and r12 (shear) (Figure 5.1). Thus, the onset of instability of 

such an angle ply occurs in the presence of a combined planar stress state. The 

main hypothesis used in the failure analysis of angle ply lamina is that the 

different types of failure modes seen in the experiments with angle ply lamina are 

associated with a structural instability in the presence of material nonlinearity 

that manifests itself in the form of kink banding, inplane matrix shearing and 

matrix compression failure. As will be shown, the failure mode undergoes a 

transition between these three dominant failure mechanisms as a function of ply 

angle. Thus, as presented here, for the first time, a non-empirical mechanics 

based model that is able to provide an interpretation for the different 

mechanisms of failure is introduced. The intention of this chapter is to expand on 

the effect of ply angle on the failure mode. This chapter is not intended as model 

for the notched angle ply laminate experimental results. Instead, this chapter 

uses experimental data available elsewhere [Shuart, Ref. 5.3]. The reader may 

skip this chapter and proceed with an uninterrupted reading of this thesis. 

5.2. Previous Work 

Previous work examined failure of angle ply laminates by focusing on the 

macroscopic state of shear in a compressively loaded laminate. Rosen [Ref. 5.1] 

and Kim [Ref. 5.2] conducted analytical and experimental studies respectively of 

angle ply laminates and found that shear failure mechanisms were significant. 

Shuart [Ref. 5.3] conducted a careful and systematic experimental study on the 

compression failure of (+0/-6)  multidirectional laminates. Shuart [Ref. 5.3] was 
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able to identify the transition of failure between kink banding (which he also 

called fiber brooming, since sometimes the laminate broke along the band which 

was formed near the boundary of the loaded edge), inplane matrix shearing and 

matrix compression. No unifying model was introduced to capture the different 

regimes of failure. Instead, different models were constructed to explain the 

different failure mechanism, which changes as a function of ply angle. However, a 

complete set of experimental data was presented to show the different 

mechanisms of failure. Shuart's experimental data for laminate failure have been 

used here as a benchmark for the trends to be expected when investigating 

compressive failure of angle ply lamina. In analyzing angle ply lamina, the same 

material properties will be used for the matrix as used in chapter 4 for the uniply 

material study, to obtain a complete set of results for the angle ply lamina. 

Shuart's work did not include neat resin properties, however the shear stress vs. 

shear strain curve for a (±45)m laminate was provided. At the time of completing 

the finite element analysis reported here-in, we were not aware of Shuart's work, 

thus, the material properties corresponding to the G30-500 BASF Fiber/Fi55 

Epoxy prepeg which was used in the uniply test specimen of Khamseh and Waas 

[Ref. 4.2] was used. However, for comparison purpose, the matrix shear stress- 

strain curve of the AS4/3502 system have been included, backed out of the 

(±45)  shear stress-shear strain data reported in Shuart [Ref. 5.3], using the 

procedure described in chapter 6. In that same figure (Figure 5.8, to be discussed 

later), the neat resin properties of the F-155 epoxy are also included. It is the 
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latter properties in conjunction with a J2 small strain flow theory of plasticity 

that was used to model the matrix, for the results reported here. 

5.3. Mechanical Model for Compressive Response of an Angle ply 

Lamina 

The configuration studied is as shown in Figure 5.2, where an angle-ply 

laminate (+0/-8)m is subjected to uniform compression loading. The (x, y) axis 

denotes lamina principal axis, and the (1, 2) axis denotes principal material axis. 

A microregion with dimension H x L is of interest for the finite element analysis. 

First, the compliances of a lamina in the x-y coordinate frame are related to the 

principal compliances in the 1-2 coordinate frame by 

S„ = m*Su +»X +2m2n2S,0 + m2n2SA, 

Syy = n*Sn + m4S22 + 2m2n2Sn + m2n2S66 

Sxy=m2n2Su + m2n2S22+(mA +n*)Sn-m2n2S( 

Sss=4m2n2Su +4m2n2S22 -8m2n2Su+(m2-n2f St 

(5.1) 

2 

66 

where, m = cos 6, n = sin 0. Next, classical lamination theory is used to find 

the laminate engineering properties Exx, Eyy, Gxy and Vxy. Using these and a 

loading condition of unit compressive stress in the x direction, the laminate 

strain can be found from 
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L°V = 0 

(5-2) 

Having obtained the strain in the x-y coordinate frame, it is necessary to 

transform the laminate strains to the 1-2 coordinate frame, since the finite 

element analysis is carried out in the principal material coordinates. This is 

achieved via (5.3) and (5.4), which show the necessary transformation. 

(5-3) 
G\\ &xx 

s22 = [r] £yy 

1 1 
2Yxy_ 

Where [T] is, 

m2 n2 2mn 

Pi- n2 m2 -2mn 

-mn mn 2      2 m -n 
(5.4) 

In the finite element analysis that follows, the microregion is fixed at the 

origin of the principal material coordinate frame, since the displacements are 

measured with respect to this point. Then, the displacement fields corresponding 

to the strain state (5.3) and (5.4) are given by 

u(x,y) = s] 'x-^ + '»' 

v(x,y) = e: 22 

2)     2 y- 
V 

y~ 
+ Yn w 

(5-5) 
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Using (5.5), the displacements corresponding to the node location of the 

boundary of the microregion were computed, to be used in the finite element 

analysis that follows. 

5.4. FEA Modeling 

The region to be analyzed using the FEA is as shown in Figure 5.2, where a 

rectangular domain of dimension H (120 df : fiber diameter) x L (70 df) of 

alternate layers of fiber and matrix are considered in a plane-strain setting. The 

matrix layers have a thickness that provide the correct overall fiber volume 

fraction, Vf = 55 %, in the present case. 

The fiber is modeled as an elastic solid with the properties as indicated in 

Table 5.1 and the matrix is modeled as a elastic-plastic isotropic solid which 

undergoes finite deformation, obeying the J2 flow theory of plasticity with 

isotropic hardening. The uniaxial stress-strain response of the matrix is as 

indicated in Figure 5.3. The fiber and matrix layers are discretized with the CPS4 

finite element using the commercial code ABAQUS®. The total number of degree 

of freedom for the model is approximately 5,754, which consist of 1,498 fiber and 

1,242 matrix elements. 

To compute the displacement data on the boundaries of the microregion, the 

far-field loading on the angle ply was assumed to be a uniform compression 

stress (ax = -1, Oy = 0, Ti2=o). Then, the displacements are calculated using the 

procedure described earlier. In particular, the displacements fields 11(1,2), v(i,2) 

on the boundary of the microregion were computed. 
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First,   a  linear  static  analysis   of the   microregion  when   subjected  to 

displacement loading on the boundary was performed.  Nodal equilibrium 

reaction forces at the boundaries were computed from this run. Next, using the 

Riks method [Ref. 4.6] option available in ABAQUS® [Ref. 5.4], a nonlinear 

response analysis of the microregion was conducted, using the boundary nodal 

forces that are equal and opposite to the model reaction forces computed via the 

linear static run. As loading proceeds, the boundaries of the microregion undergo 

large rotations. To use nodal force loading, the multi point constraint option 

(MPC) provided in ABAQUS® was used on the boundaries AB and CD. In effect, 

this allows the boundaries to remain straight yet undergo the correct global 

rotation and deformation, while maintaining the equilibrium with the applied 

boundary loads.  During the loading,  the boundaries  BC and  DA of the 

microregion must be left free to deform into any shape that is in conformity with 

equilibrium requirements. Thus, deformation localization into bands within the 

microregion is allowed to develop, yet overall force equilibrium is maintained in 

the far field. Since the MPC option was used and the microregion size also 

influences the observed results, a scaling and mesh sensitivity study were also 

carried out by systematically increasing the overall size of the microregion and 

performing the analysis as explained before (Figure 5.7). 

5.5. FEA Results and Interpretation 

The results of the static run were verified using the solution of the 

corresponding linear elastic solution. Load-response analyses were performed for 
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all 13 different configuration (5° to 65° angle plies). RIKS analysis was performed, 

where the solution was sought to a proportional loading case, including the 

possibility of unstable behavior. 

As can be seen from the plots (Figure 5.4), the calculated resultant force in the 

x-direction (ax) - average strain (6X / L) curves all show all similar features, but 

with different interpretations. Initially, the curve is linear, followed by an 

unstable unloading path from a maximum load for small ply angles (50 < 9 < 300), 

that eventually asymptotes to a constant value. This result can be explained in 

conjunction with experimental observations, where a substantial drop in the load 

accompanies kink band formation at the failure. This result also confirms various 

experimental results for unidirectional lamina (0° lamina). As the fiber angle 

increases, the dominant loading is changed from fiber compression to shear 

deformation,   where  the  matrix  state  of shear  continuously  increases  in 

proportion. Now, the shear property of the matrix becomes dominant. Of course, 

the matrix layers are also subjected to axial compression and transverse 

compression, but it is the behavior in shear that is useful for interpreting the 

experimental results. As the ply angle increases, the initial slope of the response 

curve decreases for the ply angle range (50 < 6 < 30°, Figure 5.4), as expected. In 

addition, the maximum load decreases and the unstable unloading path becomes 

stable beyond 9 = 45° (Figure 5.5). That is, an abrupt load drop is no longer the 

case in an experimental setting. Instead, the slope beyond the load maximum 

indicates stable unloading and corresponding deformation localization into 

diffused broad bands. Further, in the range of 40° < 9 < 45°, the initial linear 
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slope starts to increase. Beyond 9 = 450. The compression transverse to the 

matrix begins to carry more loads, and the loads on the fiber tend to decrease. 

Beyond 9 = 650, a maximum load is no longer observed (9 = 700 case plotted 

in Figure 5.5), instead, the loading becomes transverse compression. Response 

curves indicate a gradual "yield" like behavior of the matrix. In these cases, one 

immediately sees that the fibers no longer provide additional stiffening to the 

matrix, since the predominant loading occurs transverse to the fibers. Thus the 

matrix bears the "brunt" of the load. The plastic behavior of the matrix totally 

governs the deformation in these cases. 

A plot of the maximum (limit) load as a function of ply angle is shown in 

Figure 5.6. Shuart's experimental data are also indicated for comparison. Two 

other curves, one corresponding to the limit load obtained with a larger mesh 

(the dimensions of the region were increased by a factor of 1.25) and the plateau 

load corresponding to the original baseline mesh are also indicated. The 

implications of these results and the result of a mesh sensitivity study are 

discussed next. 

5.6. Discussion 

As is evident in Figure 5.6, the trends predicted by the present analysis based 

on the plateau load agree with the trends exhibited in the experimental results of 

Shuart. However, the plateau load is dependent on the size of the region that is 

meshed. As the size of the mesh region increases, the plateau load decreases, but 

the maximum (limit) load stays fixed as shown in Figure 5.7. Also note that as the 
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size of the mesh region increases, the rate at which the plateau load decreases is 

diminishing. On the other hand, the limit load is a mesh size independent 

quantity. 

In chapter 2, where the notched composites were studied, a physically 

induced strain gradient was dominating and influential in revealing a mesh size 

independent result for both the limit load and the plateau load. By contrast, here 

we have a case of uniform loading, but with coupling between axial and shear 

deformation. Thus, there is no intrinsic length scale to fix the size of the region in 

which deformation localizes. However, the initiation of this process is governed 

by the tangent shear modulus of the matrix, and thus, this maximum (limit) load 

is independent of the size of the microregion. On the other hand, the plateau load 

is indicative of the post-localized response that is governed by the width and 

extent of the region of localization. 

Figure 5.8 shows the comparison between Shuart's matrix property and the 

matrix property that we used. If we scale the limit load result we obtained with 

>p 

the ratio lJ^£i_j where r /eWis the yield stress and superscripts are placed to 
\Tyield ) 

indicate the in-situ stress of 3502 epoxy (Shuart) and p to indicate present 

(chapter 2). The scaled result compared to the experimental results of Shuart are 

as shown in Figure 5.9. The comparison is very good. A complete analysis, 

incorporating the in-situ stress-strain curves of 3502 epoxy is planned for a later 

time. 
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Figure 5.10 indicates two series of deformed micro-regions corresponding to 

6 = 300 and 9 = 650 and Figure 5.11 indicates the response of FEA model at 

very low angle (50) where steep load drop is observed. Notice that, 

for small angles, the bands of localization are narrow, while as the angle 

increases the bands are diffused and broad. Just as observed by Shuart, the 

mechanism of compressive failure at low angles involves kink banding, 

leading to specimen splitting across the kinked band, while for larger 

angles (intermediate 300 < 6 < 500), there is a transition in the failure 

mode where kinking does not occur. Instead fiber/matrix interfacial failure 

dominates. At these angles, the interfacial shear stress is larger than at 

smaller angles. Thus, this stress component in conjunction with any 

irregularities at the fiber/matrix interface (such as voids, partial 

debonding) leads to the onset of interfacial fiber/matrix failure. A 

complete analysis of this mode (which incorporates computing the energy release 

rates), necessitates a fracture mechanics based analysis with an 

accurate knowledge of the critical interfacial energy release rate (measured 

via suitable experiments as has been done in Song and Waas [Ref. 5-9])- This 

aspect is not considered in the present thesis, but the reader is referred 

to Song and Waas [Ref. 5.9] for further details. 
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5-7« Tables and Figures 

Material E„ (Msi) v12 G12(Msi) Thickness (in) 

G30-500 BASF Fiber 33 0.25 13.2 2.756x10-4 

Table 5.1 Fiber Properties 
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Figure 5.1 Effect of stress distribution as a function of fiber angle 
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CHAPTER 6 

MATRIX CHARACTERIZATION 

6.1. Background 

Polymers used as matrix materials are referred to as resins. The matrix resin 

generally consists of 40 to 55 % by volume of a composite material. The main 

functions of the matrix within the composite are maintaining the composite 

structure, aligning the reinforcements, acting as a stress transfer medium, and 

protection of fibers from abrasion and corrosion. The limitation of a composite 

may well be a function of the matrix used, especially where the matrix shear 

property or bonding characteristics are important (multidirectional composite). 

Thermal stability and the maximum service temperature of a composite are 

largely determined by the matrix properties. In general, any condition that lowers 

the glass-transition temperature Tg, of the matrix is detrimental to the composite. 

The glass transition temperature defines the transition between the soft rubbery 

state of a polymer and its more stiff, or glassy, state. The latter state occurs below 

the glass transition temperature and is suited for the matrix to transfer loads to 

the fibers, provide support against fiber buckling, and maintain alignment of the 

fibers. When operating above the glass transition temperatures the matrix 

becomes soft and does not perform these functions well. 
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The two basic classes of resins used in contemporary composites are 

thermosets and thermoplastics. Thermosets undergo an irreversible chemical 

change when they are heated or cured. If they are heated again after they have 

been cured, they will retain their shape until they begin to thermally decompose 

at high temperature. On the other hand, thermoplastics reversibly melt when 

heated and solidify when cooled. Once they have been initially melted to form the 

composite, they can be reshaped by heating above a lower forming temperature. 

Thermoplastic composites can be reshaped once they have been placed into 

service. A third derivative of the above two classes of resins is called a toughened 

thermoset. This is achieved by introducing additives that increases the toughness 

of the virgin resin. 

The reasons for popularity of thermosets are their low melting viscosity, good 

fiber impregnation, and low processing temperatures. They are also cheaper in 

cost compared to thermoplastic resins. Epoxy resins are the most popular choice 

for the advanced composite materials due to their excellent mechanical 

properties, their retention of mechanical properties when operating in hot and 

moist environments, and their good chemical resistance. They also have good 

dimensional stability and exhibit good adhesion to a variety of fibers. However, 

epoxies cure very slowly and several hours may be required for complete curing. 

In order to increase the poor toughness of epoxies, new classes of toughened 

epoxies have recently been introduced. The matrix material of the laminates used 

in chapter 2 belongs to this class. 

As explained in chapter 3, the matrix has a strong influence on several 

mechanical properties of the composite such as transverse modulus and strength, 
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shear properties and properties in compression. When composites are subjected 

to compressive loads, the fibers act as long columns and microbuckling of the 

fibers can occur. For very low fiber volume fractions (Vf < 0.4), fiber 

microbuckling may occur even when the matrix stresses are in the elastic range. 

Fiber microbuckling can even be driven due to thermal residual stresses in a low 

fiber volume fraction composite. However, at higher volume fractions (Vf > 0.4), 

fiber microbuckling may be preceded by matrix "yield" and/or constituent 

debonding and possibly matrix microcracking. 

Compressive failure of a unidirectional composite loaded in the fiber direction 

may be initiated by transverse splitting of the composite. This occurs when the 

strain energy released upon splitting exceeds the energy required to create new 

interfacial surface area. Splitting is driven by pre-existing interfacial cracks that 

are activated upon compression or tensile loading. Shear failure is another mode 

of composite failure under compression. This mechanism occurs when the matrix 

layers between fibers loose their shear carrying capability. It coincides with local 

shear "yielding" of the matrix. 

The important mechanisms for failure of composites under compression are 

as follows, 

1). Transverse splitting failure due to pre-existing flaws (Figure. 6.1) 

2). Fiber microbuckling where (Figure 6.2, 6.3) 

a). Matrix is elastic. 

b). Matrix yielding, following the buckling or prior to it. 

c). Constituents debonding, prior to or after buckling. 
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3). Shear failure, where the matrix locally looses its shear stiffness 

(Figure 6.4) 

The objective of this chapter is to provide a test scheme and appropriate 

characterization to extract the in-situ response of the matrix material in a fiber 

composite. 

6.2. Matrix Characterization 

To characterize the matrix, basic tests of the matrix material (simple 

compression, shear, etc) can be used. However, as stated earlier, residual stresses 

due to the constraint placed by the fibers reduce the in-situ matrix to behave 

differently than a pure matrix, cured separately without the fibers. There are two 

ways to account for this situation. One approach is to solve for the residual 

stresses and include them in subsequent analysis. Such an approach is 

prohibitive because of the large number of fibers, the non-uniform packing of the 

fibers and the uncertainty associated with the fiber/matrix interface that would 

render such calculation impractical. On the other hand, one can perform tests on 

the composite and design schemes to extract the matrix properties from the 

resulting stress-strain plots. The latter approach is adopted in the present works. 

As stated in chapter 4, Kyriakides et al. [Ref. 4.8] have adopted a similar scheme 

for characterizing the matrix. 

The following tests were performed with a view to characterizing the matrix 

1.   Simple compression test of a pure matrix coupon at room and high 

temperature (Figure 6.5). 
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2. (+45/-45)ns composite specimen compression test at room and high 

temperature (Figure 6.6). 

The result obtained from test 1 reflects the uniaxial stress-strain response of 

the pure matrix and interpretation is straightforward. The result of test 2 does 

not lend itself to such straightforward interpretation, however, it is a standard 

(ASTM D 3518-76) method by which the shear stress-shear strain response of the 

matrix can be obtained. 

Several composite specimens with [+45/-45] 12s lay-up were prepared for the 

second test. Cross-ply specimens left over from the biaxial experiments were used 

to prepare the required specimens. When this specimen is under uniaxial 

compression (Figure 6.6), äx, the stresses acting on a lamina element at 450 to 

the x- axis shown are 

°"1 = 2 +Txy 

^2=y-^ (6.1) 

6     2 

The in-plane lamina strains are 

t,  — &2 — 
2 (6.2) 

Where, ex, sy are the axial and transverse strains in the coupon measured 

with two strain gages. From test data corresponding to 6.1 and 6.2, it is 

possible to generate the lamina level shear stress / strain plot for a 

unidirectional lamina (Figure 6.7). The slope of the shear stress-strain plot 
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(Figure 6.7) will give a plot for Gn (y) of the lamina. This is shown in Figure 

6.8. Using Gn (y), it is possible to convert Gn (y) to Gm (y) (matrix) using the 

Halphin-Tsai relation given below (6.3) 

Gn = Gm 
\ + %2-ri2-vf 

\-rj2-vf 

where, (6.3) 

c    —C 
„ _ —12/ rn_ an(j e _ j for ran(jom packing of fibers 

2    Gl2f+Z2Gm 

Combining the above two expressions, the matrix tangent shear modulus 

is obtained as, 

Gm=Gn(GUJ+Gm) + Vf(Gnj-Gm) 
(M) 

Figure 6.8 indicates the variation of the in-situ matrix tangent shear modulus 

as a function of shear strain, as well as the lamina tangent shear modulus Gn (y), 

as a function of temperature. From these figures, the shear stress-shear strain of 

the matrix is computed as shown in Figure 6.9(a). 

The next step is to express the matrix uniaxial stress-strain response inferred 

from the data shown in Figure 6.9, by assuming that the inelastic response of the 

matrix follows the J2 flow theory of plasticity with isotropic hardening. 

6.3. Uniaxial Response Extracted from Shear Response Data 

According to the Prandtl-Reuss elastic-plastic equation with a Mises-Heneky 

yield condition, the ratio of the increment of each plastic strain component to its 

corresponding deviatoric stress component remains constant, that is [Ref. 6.2], 
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dep/ay=dX (6.5) 

The work conjugate measures of effective stress and incremental plastic strain 

appropriate for the Mises yield conditions are, 

(6.6) 

dep = 
(dep-dep

2) + (dep
2-dep

i) + (dep
3-de^) + 

(A ö j ■}      "T* M &91      "T* Ct o "i 1 

For materials deformed beyond the elastic range, it is convenient to express 

the total strain increment in terms of two components, the elastic strain 

increment and the plastic strain increment [Ref. 6.2]. Then, 

deu=del+dep
v (6.7) 

The plastic strain can be expressed as de? = a yd A, where the proportionality 

factor dX can be evaluated from a suitable test of the matrix material as sown 

below. In the present case is the shear response data. Thus, write, 

r=r
e+rP=F(r) (6.8) 

then, we can differentiate the above equation to obtain, 

dr = ^-+drp=^+f'(r)dT (6.9) 

G is the elastic shear modulus, which can be inferred from the linear portion 

of the curve in Figure 6.9. In addition, the plastic term can be evaluated by using 

polynomial regression fit to the test data and manipulating this as shown below, 
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dÄ = de^=dy^_ \dfjx_ _ }_£(£dT = 3 d£_     (6 IQ) 

2   ä on      2r     2 dz   T     2    T 

The equivalent stress during plastic deformation is er = V3r = crn . Thus, 

ds, 
der,,    2 

E      3 ii-    J1 + Tcrii^/'' = ^li + Tcrii 
dav    2 

~E      3 

1 f'(r) 
2     Z 

dx 

da,,    2 
^-^ + -(7, 

r i 

2    ^    V3-"CTl1 

V3" 
E     3 V3"J 

(6.11) 

Jo", 

Finally, the resulting simple compression response relation becomes, 

•(EIL) c^-f^iMfi da. (6.12) 

where E = 2(7(1 + v). This result will be discussed in the next section. 

6.4. Results and Discussion 

The results obtained in the manner described above are rather illuminating 

for a number of reasons. One immediately sees that the in-situ matrix response is 

markedly different than that would be obtained by the mechanical response from 

a pure matrix specimen. Figure 6.10 shows this comparison at room temperature 

and at high temperature. 

The pure matrix tests exaggerate the salient features of the in-situ matrix 

response curve, since there is no constraint for the matrix to flow, when tested in 

a virgin state. On the other hand, the in-situ behavior shows an earlier "yield" 

point. In the linear range, the constraint manifests itself as an apparent increase 
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(artificial) in the elastic stiffness. But this increase, also contributes to an earlier 

"yield" in the in-situ matrix behavior. Since we need the apparent in-situ matrix 

behavior, characterizing the matrix in the manner described above is more 

appropriate for the micromechanics based finite element modeling that will be 

described in chapter 7. The modeling and results presented in chapter 2, used the 

pure matrix uniaxial stress-strain curve obtained experimentally and thus, it is 

not surprising that the failure stress based on the limit load was seem to over- 

estimate the experimental values. 
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6.5- Figures 
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Figure 6.1 Transverse Tensile Failure Mode 

uuuuum 
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Figure 6.2 Out of phase mode of fiber microbuckling 
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Figure 6.3 In phase mode of fiber microbuckling 

Figure 6.4 In-Plane Shear Failure Mode 
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CHAPTER 7 

MICROMECHANICS MODEL TO PREDICT FAILURE OF MULTIPLY, 

MULTIDIRECTIONAL NOTCHED LAMINATED COMPOSITES 

7.1. Introduction 

Throughout this thesis, micromechanics has been used as a tool to predict 

failure of a macroscopic structural object. In chapter 2, a uniply laminate was 

modeled, while in chapter 5, (+0 /-0)ns laminates under a single remote 

unidirectional load were modeled. A theme that is used throughout these 

chapters is to model and interpret failure in the "large" using models that employ 

properties in the "small". In this manner, we have avoided using unnecessary 

empirical factors for the purpose of predicting strength. It must be borne in mind 

that in many instances, it is relatively easy to predict the stiffness of a structure, 

but this is not so for strength, since the notion of strength must be articulated 

and interpreted in terms of experimental observation. That is, strength data 

obtained from experiments must be accompanied by a description of the 

mechanism associated with the strength degradation or loss. 

A systematic imperfection sensitivity analysis was performed in chapter 4 to 

estimate the compressive strength failure envelope of a notched laminate with a 

given constituent geometry (volume fraction, fiber diameter) and material 
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property (a linearly elastic fiber and an elastic-plastic matrix). In chapter 4, it was 

possible to understand the experimentally observed failure mechanism of the 

uniply notched laminate based on the assumption that initial failure of the single 

uniply lamina triggers the ensuing global laminate failure. Indeed, this was based 

on the previous experimental results reported in Khamseh and Waas [Ref. 4.2]. 

The situation treated in this chapter is more complex. Here, we will attempt to 

predict global failure of a multidirectional laminate by analyzing the 

micromechanics of strength of several isolated lamina. In order to do this, we will 

first set the stage regarding the assumptions made and revisit the important 

experimental observations reported in Chapter 2. Both, room and high 

temperature strength predictions are made. 

For a symmetric multidirectional laminate, classical lamination theory (CLT- 

discussed in Chapter 3) will be employed to characterize the far field. This theory 

assumes that strains are continuous throughout the laminate. Thus, each lamina 

is subjected to the same in-plane strain fields. This necessitates that the stress 

fields within different lamina be different. In addition, in order to characterize 

the far-field stress field the laminate constitutive properties need to be calculated. 

This calculation brings in the effects of stacking sequence and construction of the 

laminate via the computation of the laminate A, B and D matrices, which are 

functions of lamina properties, lamina orientation and lamina stacking. More 

details of CLT and the computation of the A, B and D matrices can be found in 

the text of Daniel and Isahi [Ref. 6.1]. Furthermore, through-the thickness 

stresses are assumed zero since CLT is two-dimensional. 
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In Chapter 2, cross ply laminates were dominated by kink banding failure 

while the angle ply laminates failed through fiber/matrix interfacial failure. In 

many of the instances, the failed surface was a "clean cut", indicating that 

cracking occurred in the matrix layer confined between two fibers. For quasi- 

isotropic laminates, which has both angle and zero plies co-existing within the 

laminate, the failure was dominated by a combination of fiber/matrix interfacial 

failure and kink banding. Nearly always, both types of damage were visible in the 

quasi-isotropic laminate. 

The approach adopted in this chapter is similar in essence to what was 

described in chapter 4, except that in the case of quasi isotropic laminates (where 

angle plies and 0/90 plies co-exist), it becomes necessary to isolate microregions 

near the cutout corresponding to both an angle ply and a 0/90 ply. Since the far- 

field strains are the same in all the lamina, this condition is used to find the 

values of far-field strain corresponding to the initiation of failure. At all times, 

the stress and strain states in both microregions are recorded for interpretation 

later. For cross ply laminates, only a single 0 and/or 90 ply needs be analyzed 

whereas for the pure angle ply laminates, a single angle ply suffices. Thus, in 

these two latter cases, interpretation is easier than that of the quasi-isotropic 

laminates. The microregions in relation to the problem that is being studied are 

schematically shown in Figure 7.1 and Figure 7.2. 
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7.2. Modeling of Compressive Response of a Multiply Multidirectional 

Laminate 

First, the cross-ply laminate case will be presented followed by the quasi- 

isotropic/angle-ply laminates. Unlike the cross-ply laminates, the quasi-isotropic 

laminate has two kinds of lamina (o° and 450 angled ply). Therefore, it is 

necessary to separate the two types of lamina in the region of study. The angled 

ply laminates are analyzed in the same manner as the angle plies in the quasi- 

isotropic laminates. 

Each microregion is situated as shown in Figure 7.1 and Figure 7.2, where the 

symmetry plane (y = o) is marked as indicated. As in chapter 4, the Lekhnitskii 

[Ref. 3.5] solution is used to compute the displacement fields along the edges 

corresponding to the microregion. These displacement fields are computed 

corresponding to a unit far-field load in the case of uniaxial loading and unit far- 

filed proportional loads in the case of biaxial loading. Along the bottom edge of 

the microregion  (marked as AD),  equilibrium  nodal  equivalent loads are 

enforced. That is, the edge AD is under load control, and the remaining edges are 

under displacement control,  so that fibers  can  deform  according to the 

requirement of far-field equilibrium. It turns out, that if an analysis is conducted 

with the edge AD free of tractions, the results obtained for the salient features 

associated with the deformations within this microregion do not change. This is 

not surprising since the dominant loading is compression along the fibers, 

whereas the tractions along the bottom edge (edge AD) of the microregion are 

negligible compared to these dominant compressive stresses. Nevertheless, the 
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objective is to obtain the limit load that the microregion can sustain and the 

corresponding far field stresses. 

A flow chart of the analysis procedure is indicated in Figure 7.3(a). First, an 

elastic eigenvalue analysis is carried out in order to obtain the dominant 

eigenmodes of the microregion. Next, using the eigenmode associated with the 

smallest non-zero eigenvalue as a perturbation to an otherwise perfect mesh, a 

response analysis is carried out using the Riks method option provided in 

ABAQUS®. This is done for a series of imperfection magnitudes. The eigenmodes 

provide the perturbation shape but not the absolute magnitude of perturbation. 

Thus, the imperfection magnitude must be specified by the user. In the present 

work, this is achieved as follows; As shown in Figure 7.3(b), the maximum 

amplitude of the lowest eigenmode (which occurs along the edge AD) is chosen 

such that the fiber misalignment angle <|> is approximately in the range 0.050 - 20. 

Since X is known, 8 is chosen such that ty assures the intended value. After several 

runs corresponding to different values of <|> are completed, the load maxima 

associated with the RFi vs. LPF curves are plotted as a function of imperfection 

magnitude. Then, be extrapolating the maximum load value corresponding to the 

perfect case (no imperfection) is obtained. The perfect case corresponds to 

perfectly straight fibers and this case yields an upper bound for the attainable 

load maximum. 

The fiber (IM7) is assumed to be linearly elastic as before (see Table 2.1), and 

the matrix (3270 toughened epoxy) property is evaluated from the +45/-45 

coupon test, as described in chapter 6. Thus, the in-situ elastic plastic matrix 
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behavior is incorporated in the present analysis. As discussed in chapter 6, the 

matrix is modeled as a J2 incremental flow theory solid with isotropic hardening. 

The cases studied correspond to those experimental situations for which test 

data is available as presented in chapter 2. Thus for each laminate, two different 

runs are performed, one at room temperature and one at elevated temperature. 

For each temperature, uniaxial and biaxial loading cases are investigated. In this 

manner, we have studied four different cases for each laminate type. Of course, in 

the quasi-isotropic case, there are additional four cases, since both the zero ply 

and the 45 degree ply are investigated. Tables of results corresponding to the 

above cases are as shown in Table 7.1, 7.2, and 7.3. The results obtained for 

different imperfection magnitude are also shown in these tables. 

7.3. FEA Results and Interpretation 

A typical load response behavior of a microregion within a cross ply laminate 

model is shown in Figure 7.4 and a series of deformed plots of the microregion 

showing the initiation and propagation of damage in the form of kink banding is 

as shown in Figure 7.5. The numbers indicated in the plot of Figure 7.4 

correspond to the series of deformation plots shown in Figure 7.5. The 

microregion response follows a linear path up to point ©. Although local matrix 

yielding (in areas of the microregion near the cutout) is indicated prior to the 

attainment of point ©, the total integrity of this region is not affected much from 

the matrix yielding because, (1) the area of yielding is small compared to the 

overall size of the microregion and (2) the fiber rotation is small up to the point of 
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maximum load (point ©). Thus, the reaction force (RFi) vs. LPF relation is linear 

up to the maximum load point, although this is not necessarily what could be 

expected; that is, in general the RFi vs. LPF behavior is problem dependent. As 

loading increases, the fibers in the areas where the matrix has become "softer" 

start to rotate, resulting in a drop of the resultant reaction force (RFi) computed 

at the symmetry plane (indicated by point ®, in Figure 7.4). As deformation 

progresses, the region of matrix yielding (and corresponding fiber rotation) is 

expanding, propagating upward away from the areas near the cutout (until it 

reaches point ©-see figure 7.5 for the deformed configuration). Once the region 

expands away from the hole to an area where the effect of the stress gradient have 

diminished, there is no tendency for further propagating upward and thus the 

load assumes a fairly constant value (plateau load). After this point, deformation 

becomes stabilized (fiber rotation stops) and the band of kinked fibers starts to 

broaden in the x direction without any further sudden drop in the reaction force 

((D). The scenario just described is quite typical of the microregions for all the 

cases corresponding to the cross ply laminate as well as to the zero ply 

microregion within a quasi-isotropic laminate. The far-field load (or loads 

corresponding to biaxial tests) corresponding to point © is read off and tabulated 

in Table 7.1 for all the cross-ply laminate cases studied herein. 

For the case of quasi-isotropic laminates (Figure 7.2), the responses look 

different for each lamina (zero ply and 45 ply). Again, the zero ply response is 

similar to that of the cross-ply model but the far field load at which kink banding 

initiates is different. The 45 degree ply is modeled just as the zero ply 

microregion, but the microregion boundaries are taken to be along the material 
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principal directions (In this case the 45 degree and 135 degree directions-see 

Figure 7.2). Again, displacement boundary conditions are enforced on the edges 

AB, BC and CD, while edge AD is subject to equivalent equilibrium nodal loads. 

As loading proceeds, the RFi vs. LPF relation is very nearly linear (Figure 7.6(a)) 

and shows no sign of leading to a load maximum preceding a sudden load drop. 

At the same time, the corresponding plots for the equivalent plastic strain sp vs. 

LPF (Figure 7.6(b), sampled at the location with coordinates (0.025 in., 0.276 

in.)) shows that the matrix elements contained between two fibers along the 45 

degree direction and close to the cutout undergo increasing amounts of shearing. 

As loading proceeds, more and more of the matrix elements undergo large 

amounts of shearing. Simultaneously, the RFi vs. LPF plot for the zero ply 

microregion approaches a maximum load. Thus, the scenario is as follows; the 

zero ply reaches a maximum load, at which stage kink banding is about to initiate 

in this ply. At the same time, the integrity of the 45-degree ply is compromised 

due to the large amounts of plastic straining. Thus, the laminate has a "choice" in 

selecting that failure path which corresponds to the largest release of energy. As 

observed experimentally, a fiber/matrix interfacial crack is seen to dominate the 

failure, but not without some incident kink banding in the zero plies. Thus, here, 

the maximum load corresponds to the initiation of kink banding which then 

triggers   the   mode   of   fiber/matrix   interfacial   failure   that   is   observed 

experimentally in the 45 degree plies. Clearly, we need to have an accurate 

knowledge and measurement of the critical fiber/matrix interfacial fracture 

toughness (or the in-situ matrix fracture toughness, since the crack meanders 

between the fiber matrix interface and along the matrix) to carry out a fracture 
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mechanics based energy release rate analysis of the 45 degree ply to ensure that it 

is indeed the mode of failure for which the largest amount of energy is released. 

Such an analysis is relegated to the future, but details of such an analysis in the 

context of double cantilever beam specimens is reported in Song and Waas [Ref. 

5.9]. For now, we observe the good agreement between the far-field load 

corresponding to the maximum load prediction and the experimentally measured 

failure loads as indicated in Table 7.2, especially for the case of small 

imperfection (<|) = o.8°). Thus, this lends confidence to our contention that zero 

ply kinking is the dominant and hence governing mode of failure initiation in 

notched quasi-isotropic laminates. Such a conclusion, based only on 

experimental results, has been reached earlier by several previous investigators- 

see for example, Soutis, Fleck and Smith [Ref. 4.11] and Waas et al. [Ref. 4.4]. 

The preceding discussion sets the stage clearly for the interpretation of the 

pure angle ply laminate results. It becomes evident that for the pure angle ply 

specimens, a structural instability such as kinking does not take place. Instead, 

failure of these laminates is governed by the shear stress vs. shear strain response 

of the matrix, the toughness of the fiber/matrix interface and/or the matrix 

fracture toughness. 

For consistency, we have performed several runs corresponding to the test 

cases depicted in Table 7.3 for the angle ply laminates. As before, a microregion 

near the cutout and along the material principal directions is isolated and 

modeled as indicated in Figure 7.2. The details of the analysis procedure are as 

described for the 45-degree ply of the quasi-isotropic laminates. Again, the RFi 

vs. LPF curve and the equivalent plastic strain vs. LPF curves are as shown in 
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Figure 7.7(a) and Figure 7.7(b). Notice that, in these angle ply laminates, there 

are no zero plies, thus the only mode of energy release is through plastic straining 

and fiber/matrix interfacial cracking. For the sake of argument, suppose that the 

fiber/matrix interfacial toughness is infinite. Then, this laminate will continue to 

get softer by plastic straining (yielding) of the matrix elements and the gradual 

spreading of the regions of yielding. However, in reality, there is a finite 

toughness for the fiber/matrix interface as well as the in-situ matrix. Thus, failure 

occurs when the strength of the interface is compromised due to plastic straining 

of the matrix elements (mainly in shear) between any two fibers and located in 

close proximity to the cutout. Notice that the present problem places a constraint 

on the edge AB of the microregion to be a symmetry plane throughout the loading 

process. This situation is contradicted against those cases studied in chapter 5, 

where the edge AB would have the freedom to rotate globally as loading proceeds. 

Since, there are no zero plies to trigger the failure by interfacial fiber/matrix 

cracking, the angle ply laminates fail when the large amount of plastic straining 

between any two fibers compromises the fiber/matrix interfacial strength. A 

fracture mechanics based analysis of this scenario is relegated to the future. 

7.4 Concluding Remarks 

The results of the present micromechanics based global-local finite element 

analysis shows that the fundamental failure mechanisms of a symmetric 

multidirectional laminate is kink band formation due to a structural instability of 

the fibers, especially for laminates containing plies aligned along the remote load 
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directions (cross-ply and quasi-isotropic laminates). The cross-ply laminates 

have only 0/90-degree lamina, and the majority of load is carried by simple 

compression of this lamina. These lamina fail by fiber microbuckling, (on account 

of a gradually weakening matrix in shear), which in turn progresses to kink band 

formation due to fiber rotation, followed by band broadening and the triggering 

of failure in other plies. 

For the quasi-isotropic laminate, the majority of the load is still carried by the 

zero ply lamina. However, the difference between this laminate and the cross ply 

laminate is the angled ply (45° ply in this case). This 450 ply acts as a buffer zone 

(lower stiffness, but better shear response). Based on the analysis result, it is 

possible to postulate that although the matrix layers between any two fibers and 

situated near the zone of large stress and strain gradient are undergoing excessive 

plastic deformation (implies the possibility of activating small cracks at the 

fiber/matrix interface or within the matrix) the integrity of the laminate is still 

controlled by the zero-plies. However, as soon as the zero ply reaches an 

instability limit, two possibilities are encountered. Either energy is released by 

the spreading of the kink band within the zero plies or through interfacial 

fiber/matrix failure within the now compromised 45-degree plies. The "winner" 

of this competition is governed by the toughness of the fiber/matrix interfacial 

fracture toughness and/or the in-situ matrix fracture toughness compared 

against the zero ply kink band toughness (defined as the energy released per unit 

advancement of the kinked band). Clearly, in this case, the kink banding triggers 

the failure since until the zero ply undergoes a load drop, the co-existing 45 

degree ply has no possibility of initiating the fiber/matrix interfacial failure. 
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Thus, the failure load prediction based on the zero ply maximum loads provides a 

good agreement with the corresponding experimental data. 

For pure angle ply laminates, failure is through fiber/matrix interfacial failure 

since this is the only mode of failure associated with a finite fracture toughness of 

the interface and/or the in-situ matrix. To incorporate this mechanism in our 

model, it is necessary to have detailed information of the fiber/matrix interface 

toughness. This aspect is suggested for future work. 
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7.5« Tables and Figures 

Uniaxial (ksi) 

(25 °C) 

Uniaxial (ksi) 

(200 °C) 

Biaxial (ksi) 

(25 °C) 

Biaxial(ksi) 

(200 °C) 

Analysis 54 25 67 26 

(j)» o.8° 41 22 46 23 

Experiment 44 19 37 18 

Table 7.1 Cross ply analysis result 

Uniaxial (ksi) 

(25 °C) 

Uniaxial (ksi) 

(200 °C) 

Biaxial (ksi) 

(25 °C) 

Biaxial (ksi) 

(200 °C) 

Analysis 36 20 44 29 

((>» 0.8° 26 15 34 18 

Experiment 21 19 26 24 
Table 7.2 Quasi-Isotropic ply analysis result 

Uniaxial (ksi) 

(25 °C) 

Uniaxial (ksi) 

(200 °C) 

Biaxial (ksi) 

(25 °C) 

Biaxial (ksi) 

(200 °C) 

Analysis No Limit Load No Limit Load No Limit Load No Limit Load 

Experiment 22.5 22 35 31 
Table 7.3 Angle ply analysis result 
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Figure 7.1 Cross-Ply Laminates Model 
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Figure 7.2 Quasi-Isotropic / Angle Ply Laminates Model 
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Figure 7.5 Deformed Microregion Shape (Continued) 
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strain is sampled at the point with coordinate (0.021 in., 0.271 in.)) 

167 



0.00 0.01 0.02 0.03 0.04 0.05 0.06 

LPF 
(a) 

LPF 
(b) 

Figure 7.7 Angle ply response result for a angle ply laminate (The equivalent plastic 
strain is sampled at the point with coordinate (0.019 in., 0.261 in.)) 
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CHAPTER 8 

CONCLUDING REMARKS 

The investigation of failure mechanisms of notched laminated composites was 

performed throughout this thesis. A systematic experimental approach was 

performed to establish base data for the failure modeling of laminated 

composites. Previous test data generated by Khamseh and Waas [Ref. 4.2] was 

used for the uniply modeling reported in chapter 4. The essential failure 

mechanisms that govern the failure of composite were found to be: 1). Failure 

initiation due to instability in the form of kink banding, 2). Failure initiation due 

to matrix shear failure, also termed fiber/matrix interfacial failure. The kink 

banding failure mode was incorporated in a micromechanics based model 

analyzed through the finite element method in conjunction with the commercial 

code ABAQUS®. Based on the results from this analysis, it was possible to 

capture the failure initiation envelope of notched uni-directional laminates as a 

function of the notch size for both remote uniaxial and biaxialioads . The results 

of this analysis captures the test data well. This is the first time in which starting 

from basic constituent material properties, a complete analytical model has been 

presented to predict the failure of a notched structural component, without 

resorting to any form of empiricism. This important fact must be noted since the 

procedure we have put forth is a departure from the traditional empirical 

methods that have been used for this purpose in the Aerospace community. 
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A unification of different failure mechanisms was introduced next by using 

available test data from a previous set of experiments (Shuart, 1988). One simple 

model was seen to capture the transition of failure initiation from unstable kink 

formation to stable matrix shear failure. A procedure to obtain the in-situ 

material properties of the matrix was described and used in subsequent modeling 

of multidirectional laminates.   For these laminates a set of specially designed 

stacking sequences (cross-plies that involve only zero and 90 degree plies, angle 

plies that involve no zero and 90 degree plies, and quasi-isotropic laminates that 

involve a combination of zero,90 and angle plies) was first studied experimentally 

at room and high temperature to obtain a consistent set of uniaxial and biaxial 

test data for room and elevated temperature. Finally, the test results were 

predicted by extending the uniply laminate modeling to the multi-directional 

laminates. Different failure mechanisms were considered and the different 

mechanisms of failure were interpreted through the analysis predictions. 

It is clear at this stage that the fiber microbuckling/kink banding instability of 

the laminate system is dominating the mechanics of failure of symmetric notched 

laminates. The shear response of the matrix is highly influential in dictating the 

mechanics of failure, but the influence of the stress and strain, gradients in 

influencing the failure(in terms of setting the kink band width and the maximum 

load sustained) is well captured by the procedure that has been put forth in this 

thesis. A flow chart of this procedure is shown in Figure 8.1 For the quasi- 

isotropic laminate, the system sustains the load via 0/90-ply lamina, however the 

initiated damage will propagate through the fiber/matrix interface in the 45 

degree plies, where an excessive (and localized) plastic shear deformation is 
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already well in progress. A similar scenario persists for the pure angle ply 

laminates, but in this case, the failure mechanism is unique and is through the 

propagation of damage via fiber/matrix interfacial cracking. 
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